Menu Close

let-give-u-n-0-pi-cos-nx-dx-1-2-cosx-2-1-prove-that-u-n-2-1-2-u-n-1-u-n-0-2-ptove-that-u-n-is-convergent-and-find-its-sum-




Question Number 33125 by prof Abdo imad last updated on 10/Apr/18
let give u_n = ∫_0 ^π     ((cos(nx)dx)/(1−2λcosx +λ^2 ))  1) prove that  λ u_(n+2)  −(1+λ^2 )u_(n+1)  +λ u_n =0  2) ptove that Σ u_n  is convergent and find its sum
$${let}\:{give}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right){dx}}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\lambda\:{u}_{{n}+\mathrm{2}} \:−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){u}_{{n}+\mathrm{1}} \:+\lambda\:{u}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{ptove}\:{that}\:\Sigma\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *