Menu Close

let-give-u-n-1-n-1-1-1-2-1-n-find-lim-n-u-n-




Question Number 29461 by prof Abdo imad last updated on 09/Feb/18
let give  u_n = (1/( (√n)))(  (1/( (√1))) +(1/( (√2))) +...+(1/( (√n))))   find lim_(n→+∞) u_(n ) .
letgiveun=1n(11+12++1n)findlimn+un.
Commented by prof Abdo imad last updated on 13/Feb/18
we have u_n =((√n)/n)(  (1/( (√1))) + (1/( (√2))) +.....+(1/( (√n))))  = (1/n)(  (1/( (√(1/n)))) +(1/( (√(2/n)))) +....+(1/( (√(n/n)))))  = (1/n)Σ_(k=1) ^n   (1/( (√(k/n)))) so u_(n )  is a Rieman sum and  lim_(n→∞)  u_n = ∫_0 ^1     (dx/( (√x)))  =[2(√(x ))]_0 ^1 = 2 .
wehaveun=nn(11+12+..+1n)=1n(11n+12n+.+1nn)=1nk=1n1knsounisaRiemansumandlimnun=01dxx=[2x]01=2.

Leave a Reply

Your email address will not be published. Required fields are marked *