let-give-u-n-k-0-1-k-1-2-2-k-find-lim-n-u-n- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 29505 by abdo imad last updated on 09/Feb/18 letgiveun=∑k=0∞1(k+1)22kfindlimn→∞un. Commented by abdo imad last updated on 11/Feb/18 un=∑k=0n1(k+1)22k. Commented by abdo imad last updated on 13/Feb/18 wehaveun=∑k=1n+11k22k−1=2∑k=1n+11k2(12)kbutthserie∑k=1∞1k2(12)kisconvrgenteletputw(x)=∑n=1∞xnn2for∣x∣<1wehavew′(x)=∑n=1∞xn−1n⇒xw′(x)=∑n=1∞xnn⇒w′(x)+xw″(x)=∑n=1∞xn−1=∑n=0∞xn=11−xsowissolutionforthed.ey′+xy″=11−xfory′=z⇒z+xz′=11−xh.e⇒z+xz′=0⇒xz′=−z⇒z′z=−1x⇒ln∣z∣=−ln∣x∣+k⇒z=λxfor0<x<1mvc⇒z′=λ′x−λx2⇒λx+λ′−λx=11−x⇒λ′=11−x⇒λ(x)=−ln(1−x)+kandk=λ(0)=0z(x)=−ln(1−x)x=y′⇒y(x)=−∫0xln(1−t)tdt+cc=y(0)=0⇒w(x)=−∫0xln(1−t)tdtandS=2w(12)=−2∫012ln(1−t)tdt…..becontinued…. Commented by abdo imad last updated on 14/Feb/18 wehavelimn→∞un=2∑n=1∞1n2(12)nletputS(x)=∑n=0∞xn=11−x⇒∫0xS(t)dt=∑n=0∞xn+1n+1=∑n=1∞xnn=−ln(1−x)for0<x<1(λ=0)⇒x∑n=1∞xn−1n=−ln(1−x)⇒∑n=1∞xn−1n=−ln(1−x)x⇒∫0x(∑n=1∞tn−1n)dt=−∫0xln(1−t)t+λ⇒∑n=1∞xnn2=−∫0xln(1−t)t(λ=0)and2∑n=1∞1n2(12)n=−∫012ln(1−t)tdtch.t=cosθ∫012(…)dt=∫π2π3ln(1−cosθ)cosθsinθdθ=∫π2π3tanθln(1−cosθ)dθ….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-U-n-p-k-1-n-1-n-k-p-1-with-n-p-from-N-1-calculate-lim-n-U-n-p-for-p-2-2-prove-that-U-n-1-is-convergent-3-let-V-n-k-1-n-sin-1-n-k-2-find-lim-VNext Next post: Question-160576 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.