Menu Close

let-give-u-n-k-0-1-k-1-2-2-k-find-lim-n-u-n-




Question Number 29505 by abdo imad last updated on 09/Feb/18
let give u_n =  Σ_(k=0) ^∞    (1/((k+1)^2  2^k ))  find  lim_(n→∞) u_n   .
letgiveun=k=01(k+1)22kfindlimnun.
Commented by abdo imad last updated on 11/Feb/18
u_n =Σ_(k=0) ^n    (1/((k+1)^2 2^k )).
un=k=0n1(k+1)22k.
Commented by abdo imad last updated on 13/Feb/18
we have u_n = Σ_(k=1) ^(n+1)   (1/(k^2  2^(k−1) ))=2Σ_(k=1) ^(n+1)   (1/k^2 )((1/2))^k but thserie  Σ_(k=1) ^∞  (1/k^2 )((1/2))^k  is convrgente  let putw(x)=Σ_(n=1) ^∞  (x^n /n^2 )  for ∣x∣<1  we have w^′ (x)= Σ_(n=1) ^∞  (x^(n−1) /n) ⇒xw^′ (x)=Σ_(n=1) ^∞  (x^n /n)  ⇒w^′ (x) +xw^(′′) (x)=Σ_(n=1) ^∞  x^(n−1) =Σ_(n=0) ^∞  x^n   =(1/(1−x)) so w is  solution for the d.e  y^′  +xy^(′′)  =(1/(1−x)) for y^′ =z ⇒  z+xz^′ =(1/(1−x))    h.e⇒z+xz^′ =0 ⇒xz^′ =−z ⇒(z^′ /z) =((−1)/x)  ⇒ln∣z∣=−ln∣x∣ +k⇒z= (λ/x)  for 0<x<1 mvc ⇒  z^′ =(λ^′ /x) −(λ/x^2 ) ⇒(λ/x) +λ^′  −(λ/x)=(1/(1−x)) ⇒λ^′  = (1/(1−x))⇒  λ(x)= −ln(1−x) +k and k=λ(0)=0  z(x)=−((ln(1−x))/x)=y^′  ⇒ y(x)=−∫_0 ^x ((ln(1−t))/t)dt +c  c=y(0)=0 ⇒ w(x)= −∫_0 ^x  ((ln(1−t))/t)dt and  S=2w((1/2))=−2∫_0 ^(1/2) ((ln(1−t))/t)dt .....be continued....
wehaveun=k=1n+11k22k1=2k=1n+11k2(12)kbutthseriek=11k2(12)kisconvrgenteletputw(x)=n=1xnn2forx∣<1wehavew(x)=n=1xn1nxw(x)=n=1xnnw(x)+xw(x)=n=1xn1=n=0xn=11xsowissolutionforthed.ey+xy=11xfory=zz+xz=11xh.ez+xz=0xz=zzz=1xlnz∣=lnx+kz=λxfor0<x<1mvcz=λxλx2λx+λλx=11xλ=11xλ(x)=ln(1x)+kandk=λ(0)=0z(x)=ln(1x)x=yy(x)=0xln(1t)tdt+cc=y(0)=0w(x)=0xln(1t)tdtandS=2w(12)=2012ln(1t)tdt..becontinued.
Commented by abdo imad last updated on 14/Feb/18
we have lim_(n→∞) u_n = 2Σ_(n=1) ^∞  (1/n^2 )((1/2))^n  let put  S(x)=Σ_(n=0) ^∞  x^n  =(1/(1−x))⇒ ∫_0 ^x S(t)dt = Σ_(n=0) ^∞  (x^(n+1) /(n+1))=Σ_(n=1) ^∞  (x^n /n)  =−ln(1−x)  for 0<x<1   (λ=0)⇒  x Σ_(n=1) ^∞   (x^(n−1) /n)=−ln(1−x)⇒Σ_(n=1) ^∞  (x^(n−1) /n) =−((ln(1−x))/x)⇒  ∫_0 ^x (Σ_(n=1) ^∞  (t^(n−1) /n))dt=−∫_0 ^x  ((ln(1−t))/t) +λ⇒  Σ_(n=1) ^∞  (x^n /n^2 ) =−∫_0 ^x   ((ln(1−t))/t)      (λ=0)and  2Σ_(n=1) ^∞  (1/n^2 )((1/2))^n  =−∫_0 ^(1/2)     ((ln(1−t))/t)dt  ch.  t=cosθ  ∫_0 ^(1/2)   (...)dt= ∫_(π/2) ^(π/3)  ((ln(1−cosθ))/(cosθ))sinθ dθ  =∫_(π/2) ^(π/3)  tanθ ln(1−cosθ)dθ....be continued...
wehavelimnun=2n=11n2(12)nletputS(x)=n=0xn=11x0xS(t)dt=n=0xn+1n+1=n=1xnn=ln(1x)for0<x<1(λ=0)xn=1xn1n=ln(1x)n=1xn1n=ln(1x)x0x(n=1tn1n)dt=0xln(1t)t+λn=1xnn2=0xln(1t)t(λ=0)and2n=11n2(12)n=012ln(1t)tdtch.t=cosθ012()dt=π2π3ln(1cosθ)cosθsinθdθ=π2π3tanθln(1cosθ)dθ.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *