Menu Close

let-give-u-n-k-1-n-1-1-n-2-1-kn-k-integr-fixed-2-find-lim-n-u-n-k-




Question Number 28891 by abdo imad last updated on 31/Jan/18
let give u_(n,k) = (1/(n+1)) +(1/(n+2)) +.... (1/(kn))   k integr fixed ≥2  find lim_(n→+  ∞) u_(n,k) .
$${let}\:{give}\:{u}_{{n},{k}} =\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{{n}+\mathrm{2}}\:+….\:\frac{\mathrm{1}}{{kn}}\:\:\:{k}\:{integr}\:{fixed}\:\geqslant\mathrm{2} \\ $$$${find}\:{lim}_{{n}\rightarrow+\:\:\infty} {u}_{{n},{k}} . \\ $$
Answered by ajfour last updated on 01/Feb/18
u=Σ_(r=1) ^(n(k−1)) ((1/n)/(1+(r/n))) = ∫_0 ^(  k−1) (dx/(1+x))  =ln (1+x)∣_0 ^(k−1)  = ln k .
$${u}=\underset{{r}=\mathrm{1}} {\overset{{n}\left({k}−\mathrm{1}\right)} {\sum}}\frac{\mathrm{1}/{n}}{\mathrm{1}+\frac{{r}}{{n}}}\:=\:\int_{\mathrm{0}} ^{\:\:{k}−\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}} \\ $$$$=\mathrm{ln}\:\left(\mathrm{1}+{x}\right)\mid_{\mathrm{0}} ^{{k}−\mathrm{1}} \:=\:\mathrm{ln}\:\boldsymbol{{k}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *