Menu Close

let-give-u-n-k-1-n-1-k-ln-n-1-prove-that-u-n-is-convergent-2-if-lim-n-u-n-prove-the-0-lt-lt-1-




Question Number 31417 by abdo imad last updated on 08/Mar/18
let give u_n = Σ_(k=1) ^n  (1/k) −ln(n)  1) prove that u_n  is convergent   2) if   γ=lim_(n→∞) u_n   prove the 0<γ<1 .
$${let}\:{give}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:−{ln}\left({n}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{u}_{{n}} \:{is}\:{convergent}\: \\ $$$$\left.\mathrm{2}\right)\:{if}\:\:\:\gamma={lim}_{{n}\rightarrow\infty} {u}_{{n}} \:\:{prove}\:{the}\:\mathrm{0}<\gamma<\mathrm{1}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *