Menu Close

let-give-u-n-k-1-n-sin-k-n-sin-k-n-2-1-prove-that-the-sequence-u-n-is-convergent-2-find-lim-n-u-n-




Question Number 31461 by abdo imad last updated on 08/Mar/18
let give  u_n = Σ_(k=1) ^n  sin ((k/n)) sin((k/n^2 ))  1) prove that the sequence (u_n ) is convergent  2) find lim_(n→∞)  u_n .
$${let}\:{give}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\:\left(\frac{{k}}{{n}}\right)\:{sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:{is}\:{convergent} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{u}_{{n}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *