Menu Close

let-give-u-n-npi-n-1-pi-e-t-sint-t-with-gt-0-calculate-n-0-u-n-




Question Number 28676 by abdo imad last updated on 28/Jan/18
let give  u_n = ∫_(nπ) ^((n+1)π)   e^(−λt)  ((sint)/( (√t)))    with λ>0  calculate Σ_(n=0) ^(+∞)    u_n  .
$${let}\:{give}\:\:{u}_{{n}} =\:\int_{{n}\pi} ^{\left({n}+\mathrm{1}\right)\pi} \:\:{e}^{−\lambda{t}} \:\frac{{sint}}{\:\sqrt{{t}}}\:\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$${calculate}\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\:\:{u}_{{n}} \:.\: \\ $$$$ \\ $$
Commented by abdo imad last updated on 30/Jan/18
Σ_(n=0) ^(+∞)  u_n = ∫_0 ^∞   e^(−λt)  ((sint)/( (√t)))dt=(√π)sin( (π/4) −((arctanλ)/2)) from  Q 28756.
$$\sum_{{n}=\mathrm{0}} ^{+\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{t}} \:\frac{{sint}}{\:\sqrt{{t}}}{dt}=\sqrt{\pi}{sin}\left(\:\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\lambda}{\mathrm{2}}\right)\:{from} \\ $$$${Q}\:\mathrm{28756}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *