Menu Close

let-give-w-e-i-2pi-n-and-S-k-0-n-1-w-k-2-1-prove-that-S-k-0-n-1-w-q-k-2-2-find-S-




Question Number 28546 by abdo imad last updated on 26/Jan/18
let give w=e^(i((2π)/n))    and  S= Σ_(k=0) ^(n−1)   w^k^2    1) prove that   S= Σ_(k=0) ^(n−1)   w^((q+k)^2 )   2) find ∣S∣.
$${let}\:{give}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:{and}\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{\left({q}+{k}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:\mid{S}\mid. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *