Menu Close

let-give-x-0-0-y-0-1-and-y-n-x-n-1-y-n-1-x-n-x-n-1-y-n-1-for-n-1-let-z-n-x-n-i-y-n-n-N-1-calculate-z-0-z-1-and-z-2-2-prove-that-n-N-n-1-z-n-1-i-z-n-




Question Number 31032 by abdo imad last updated on 02/Mar/18
let give x_0 =0 ,y_0 =1 and {_(y_n =x_(n−1)  +y_(n−1) ) ^(x_n =x_(n−1)  −y_(n−1) )       for n≥1 let  z_n =x_n  +i y_n      ∀n∈N  1)calculate z_0  ,z_1  and z_2   2)prove that ∀n∈N^ ,n≥1  z_n =(1+i)z_(n−1)  find z_n then  find the expression of x_n  and y_n   3)let put S_n =z_0  +z_1  +....z_n   s_n =x_0  +x_1  +...+x_n   s_n ^′ =y_0  +y_1  +...+y_n   find those sum interms of n.
$${let}\:{give}\:{x}_{\mathrm{0}} =\mathrm{0}\:,{y}_{\mathrm{0}} =\mathrm{1}\:{and}\:\left\{_{{y}_{{n}} ={x}_{{n}−\mathrm{1}} \:+{y}_{{n}−\mathrm{1}} } ^{{x}_{{n}} ={x}_{{n}−\mathrm{1}} \:−{y}_{{n}−\mathrm{1}} } \:\:\:\:\:\:{for}\:{n}\geqslant\mathrm{1}\:{let}\right. \\ $$$${z}_{{n}} ={x}_{{n}} \:+{i}\:{y}_{{n}} \:\:\:\:\:\forall{n}\in{N} \\ $$$$\left.\mathrm{1}\right){calculate}\:{z}_{\mathrm{0}} \:,{z}_{\mathrm{1}} \:{and}\:{z}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{n}\in{N}^{} ,{n}\geqslant\mathrm{1}\:\:{z}_{{n}} =\left(\mathrm{1}+{i}\right){z}_{{n}−\mathrm{1}} \:{find}\:{z}_{{n}} {then} \\ $$$${find}\:{the}\:{expression}\:{of}\:{x}_{{n}} \:{and}\:{y}_{{n}} \\ $$$$\left.\mathrm{3}\right){let}\:{put}\:{S}_{{n}} ={z}_{\mathrm{0}} \:+{z}_{\mathrm{1}} \:+….{z}_{{n}} \\ $$$${s}_{{n}} ={x}_{\mathrm{0}} \:+{x}_{\mathrm{1}} \:+…+{x}_{{n}} \\ $$$${s}_{{n}} ^{'} ={y}_{\mathrm{0}} \:+{y}_{\mathrm{1}} \:+…+{y}_{{n}} \:\:{find}\:{those}\:{sum}\:{interms}\:{of}\:{n}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *