Menu Close

let-give-x-0-t-x-1-e-t-dt-and-x-gt-0-gamma-euler-function-prove-that-x-lim-n-gt-n-n-x-n-n-1-n-2-n-x-




Question Number 26564 by abdo imad last updated on 26/Dec/17
let give Γ(x)= ∫_0 ^∞ t^(x−1)  e^(−t) dt   and   x>0(gamma euler function)  prove that  Γ(x)  =lim_(n−>∝)  (((n!) n^x )/(n(n+1)(n+2)...(n+x)))
$${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:{and}\:\:\:{x}>\mathrm{0}\left({gamma}\:{euler}\:{function}\right) \\ $$$${prove}\:{that}\:\:\Gamma\left({x}\right)\:\:={lim}_{{n}−>\propto} \:\frac{\left({n}!\right)\:{n}^{{x}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{x}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *