Menu Close

let-give-x-0-t-x-1-e-t-dt-with-x-gt-0-prove-that-lim-n-gt-0-n-1-t-n-n-t-x-1-dt-x-




Question Number 26566 by abdo imad last updated on 26/Dec/17
let give Γ(x)= ∫_0 ^∞  t^(x−1) e^(−t) dt with x>0 prove that   lim _(n−>∝) ∫_0 ^n  (1−(t/n))^n t^(x−1) dt  = Γ(x)
letgiveΓ(x)=0tx1etdtwithx>0provethatlimn>∝0n(1tn)ntx1dt=Γ(x)
Commented by abdo imad last updated on 28/Dec/17
let put A_n  = ∫_0 ^n (1−(t/n))^n  t^(x−1) dt  A_n   =  ∫_R f_n (t)dt   where the sequence  f_n =  (1−(t/n))^n  t^(x−1)  χ_([0,n]) (t)we have  f_n −>_(c.s) f(t)= e^(−t)  t^(x−1) on [0,∝[  but /f_n  /≤ ρ(t)= e^(−t )  t^(x−1 ) χ_([0,α)  by theoreme  of vonvergence domine  ∫_R f_n  (t)dt_(n−∝) −−>∫_0 ^∞  e^(−t)  t^(x−1) dx=Γ(x)
letputAn=0n(1tn)ntx1dtAn=Rfn(t)dtwherethesequencefn=(1tn)ntx1χ[0,n](t)wehavefn>c.sf(t)=ettx1on[0,[but/fn/ρ(t)=ettx1χ[0,αbytheoremeofvonvergencedomineRfn(t)dtn>0ettx1dx=Γ(x)

Leave a Reply

Your email address will not be published. Required fields are marked *