let-give-x-gt-0-1-prove-that-0-1-dt-1-t-x-n-0-1-n-nx-1-2-find-n-0-1-n-n-1-and-n-0-1-n-2n-1-3-find-n-1-1-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 29978 by abdo imad last updated on 14/Feb/18 letgivex>01)provethat∫01dt1+tx=∑n=0∞(−1)nnx+12)find∑n=0∞(−1)nn+1and∑n=0∞(−1)n2n+13)find∑n=1∞(−1)n3n+1. Commented by abdo imad last updated on 16/Feb/18 1)fort∈]0,1]tx=exlnt<1⇒∫01dt1+tx=∫01(∑n=0∞(−1)ntnx)dt=∑n=0∞(−1)n∫01tnxdt=∑n=0∞(−1)nnx+12)wehaveprovedthatA(x)=∑n=0∞(−1)nnx+1=∫01dt1+tx⇒∑n=0∞(−1)nn+1=A(1)=∫01dt1+t=[ln(1+t)]01=ln(2)∑n=0∞(−1)n2n+1=A(2)=∫01dt1+t2=[arctant]01=π43)wehave∑n=0∞(−1)n3n+1=A(3)=∫01dt1+t3wehave∫0∞dt1+t3=∫01dt1+t3+∫1+∞dt1+t3thech.t=1ugive∫1∞dt1+t3=∫0111+1u3duu2=∫01duu2+1u=∫01udu1+u2=12[ln(1+u2)]01=12ln2thech.t3=ugive∫0∞dt1+t3=∫0∞11+u13u13−1du=13∫0∞u13−11+udu=13πsin(π3)=π3132=2π33⇒∫01dt1+t3=∫0∞dt1+t3−∫1+∞dt1+t3=2π33−12ln(2)⇒∑n=0∞(−1)n3n+1=2π33−12ln(2). Commented by abdo imad last updated on 16/Feb/18 forQ3)wehaveusedtheresult∫0∞ta−11+tdt=πsin(πa)with0<a<1. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-ln-x-lnx-x-n-1-x-n-ln-1-x-n-with-x-gt-0-Next Next post: prove-that-n-1-1-n-ln-1-1-n-2-show-that-k-2-1-k-k-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.