Menu Close

let-give-x-gt-0-1-prove-that-0-1-dt-1-t-x-n-0-1-n-nx-1-2-find-n-0-1-n-n-1-and-n-0-1-n-2n-1-3-find-n-1-1-n-




Question Number 29978 by abdo imad last updated on 14/Feb/18
let give x>0  1) prove that   ∫_0 ^1     (dt/(1+t^x ))= Σ_(n=0) ^∞    (((−1)^n )/(nx+1))  2) find Σ_(n=0) ^∞   (((−1)^n )/(n+1))  and Σ_(n=0) ^∞   (((−1)^n )/(2n+1))  3) find Σ_(n=1) ^∞    (((−1)^n )/(3n+1)) .
letgivex>01)provethat01dt1+tx=n=0(1)nnx+12)findn=0(1)nn+1andn=0(1)n2n+13)findn=1(1)n3n+1.
Commented by abdo imad last updated on 16/Feb/18
1) for t∈]0,1]  t^x  =e^(xlnt) <1 ⇒ ∫_0 ^1   (dt/(1+t^x ))=∫_0 ^1  (Σ_(n=0) ^∞ (−1)^n t^(nx) )dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  t^(nx) dt=Σ_(n=0) ^∞  (((−1)^n )/(nx +1))  2) we have proved that A(x)=Σ_(n=0) ^∞  (((−1)^n )/(nx+1))=∫_0 ^1    (dt/(1+t^x ))⇒  Σ_(n=0) ^∞   (((−1)^n )/(n+1))=A(1)=∫_0 ^1  (dt/(1+t))=[ln(1+t)]_0 ^1   =ln(2)  Σ_(n=0) ^∞   (((−1)^n )/(2n+1))=A(2)=∫_0 ^1   (dt/(1+t^2 ))=[arctant]_0 ^1 =(π/4)  3)we have Σ_(n=0) ^∞  (((−1)^n )/(3n+1))= A(3) = ∫_0 ^1   (dt/(1+t^3 ))   we have  ∫_0 ^∞ (dt/(1+t^3 )) = ∫_0 ^1   (dt/(1+t^3 )) +∫_1 ^(+∞)   (dt/(1+t^3 )) the ch. t=(1/u) give  ∫_1 ^∞   (dt/(1+t^3 ))=∫_0 ^1    (1/(1+(1/u^3 ))) (du/u^2 )= ∫_0 ^1      (du/(u^2 +(1/u))) =∫_0 ^1  ((udu)/(1+u^2 ))  =(1/2)[ln(1+u^2 )]_0 ^1  =(1/2)ln2   the ch. t^3 =u give  ∫_0 ^∞  (dt/(1+t^3 )) = ∫_0 ^∞   (1/(1+u))(1/3)u^((1/3)−1) du =(1/3)∫_0 ^∞  (u^((1/3)−1) /(1+u))du  =(1/3) (π/(sin((π/3))))=(π/3) (1/((√3)/2)) =((2π)/(3(√3))) ⇒  ∫_0 ^1   (dt/(1+t^3 )) =∫_0 ^∞   (dt/(1+t^3 )) − ∫_1 ^(+∞)  (dt/(1+t^3 ))=((2π)/(3(√3))) −(1/2)ln(2)⇒  Σ_(n=0) ^∞   (((−1)^n )/(3n+1))=((2π)/(3(√3))) −(1/2)ln(2).
1)fort]0,1]tx=exlnt<101dt1+tx=01(n=0(1)ntnx)dt=n=0(1)n01tnxdt=n=0(1)nnx+12)wehaveprovedthatA(x)=n=0(1)nnx+1=01dt1+txn=0(1)nn+1=A(1)=01dt1+t=[ln(1+t)]01=ln(2)n=0(1)n2n+1=A(2)=01dt1+t2=[arctant]01=π43)wehaven=0(1)n3n+1=A(3)=01dt1+t3wehave0dt1+t3=01dt1+t3+1+dt1+t3thech.t=1ugive1dt1+t3=0111+1u3duu2=01duu2+1u=01udu1+u2=12[ln(1+u2)]01=12ln2thech.t3=ugive0dt1+t3=011+u13u131du=130u1311+udu=13πsin(π3)=π3132=2π3301dt1+t3=0dt1+t31+dt1+t3=2π3312ln(2)n=0(1)n3n+1=2π3312ln(2).
Commented by abdo imad last updated on 16/Feb/18
for Q 3) we have used the result ∫_0 ^∞  (t^(a−1) /(1+t))dt=(π/(sin(πa)))  with 0<a<1 .
forQ3)wehaveusedtheresult0ta11+tdt=πsin(πa)with0<a<1.

Leave a Reply

Your email address will not be published. Required fields are marked *