Menu Close

let-give-x-gt-0-and-S-x-0-sint-e-xt-1-dt-developp-S-at-form-of-series-




Question Number 28613 by abdo imad last updated on 27/Jan/18
let give x>0  and S(x)= ∫_0 ^∞    ((sint)/(e^(xt) −1))dt .  developp S at form of series.
letgivex>0andS(x)=0sintext1dt.developpSatformofseries.
Commented by abdo imad last updated on 01/Feb/18
S(x)= ∫_0 ^∞  ((e^(−xt)  sint)/(1−e^(−xt) ))dt= ∫_0 ^∞ ( Σ_(n=0) ^∞ e^(−nxt) )e^(−xt) sintdt  = Σ_(n=0) ^∞    ∫_0 ^∞  e^(−(n+1)xt) sint dt=Σ_(n=0) ^∞  A_n (x)   A_n (x)= ∫_0 ^∞  e^(−(n+1)xt) sint dt=−Im( ∫_0 ^∞  e^(−((n+1)x +i)t) dt)but  ∫_0 ^∞   e^(−((n+1)x+i)t) dt =−(1/((n+1)x+i))[  e^(−((n+1)x+i)t) ]_0 ^(+∞)   = (1/((n+1)x+i))=(((n+1)x−i)/((n+1)^2 x^2 +1))=(((n+1)x)/(1+(n+1)^2 x^2 ))−(i/(1+(n+1)^2 x^2 ))  A_n (x)= (1/(1+(n+1)^2 x^2 )) ⇒S(x)= Σ_(n=0) ^∞   (1/(1+(n+1)^2 x^2 ))  with x>0
S(x)=0extsint1extdt=0(n=0enxt)extsintdt=n=00e(n+1)xtsintdt=n=0An(x)An(x)=0e(n+1)xtsintdt=Im(0e((n+1)x+i)tdt)but0e((n+1)x+i)tdt=1(n+1)x+i[e((n+1)x+i)t]0+=1(n+1)x+i=(n+1)xi(n+1)2x2+1=(n+1)x1+(n+1)2x2i1+(n+1)2x2An(x)=11+(n+1)2x2S(x)=n=011+(n+1)2x2withx>0

Leave a Reply

Your email address will not be published. Required fields are marked *