let-give-x-gt-0-and-S-x-0-sint-e-xt-1-dt-developp-S-at-form-of-series- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 28613 by abdo imad last updated on 27/Jan/18 letgivex>0andS(x)=∫0∞sintext−1dt.developpSatformofseries. Commented by abdo imad last updated on 01/Feb/18 S(x)=∫0∞e−xtsint1−e−xtdt=∫0∞(∑n=0∞e−nxt)e−xtsintdt=∑n=0∞∫0∞e−(n+1)xtsintdt=∑n=0∞An(x)An(x)=∫0∞e−(n+1)xtsintdt=−Im(∫0∞e−((n+1)x+i)tdt)but∫0∞e−((n+1)x+i)tdt=−1(n+1)x+i[e−((n+1)x+i)t]0+∞=1(n+1)x+i=(n+1)x−i(n+1)2x2+1=(n+1)x1+(n+1)2x2−i1+(n+1)2x2An(x)=11+(n+1)2x2⇒S(x)=∑n=0∞11+(n+1)2x2withx>0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-give-u-n-k-1-n-sin-k-n-k-and-R-find-lim-n-u-n-Next Next post: find-n-1-sin-nx-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.