Menu Close

let-give-x-lt-1-find-0-pi-2-d-1-x-2-cos-2-




Question Number 29972 by abdo imad last updated on 14/Feb/18
let give ∣x∣<1 find   ∫_0 ^(π/2)      (dθ/( (√(1−x^2 cos^2 θ)))) .
letgivex∣<1find0π2dθ1x2cos2θ.
Commented by abdo imad last updated on 18/Feb/18
we have (1+u^ )^α   =1+αu +((α(α−1))/(2!))u^2  +...  =1+Σ_(n=1) ^∞   ((α(α−1)...(α−n+1))/(n!))u^n    with∣u∣<1 we have  ∣xcosθ∣<1 ⇒ (1/( (√(1−x^2 cos^2 θ))))=(1−(xcosθ)^2 )^(−(1/2))   =1+Σ_(n=1) ^∞   (((−(1/2))(−(1/2)−1)...(−(1/2)−n+1))/(n!)) x^(2n)  cos^(2n) θ let  put A_n =(−(1/2))(−(1/2)−1)...(−(1/2)−n+1) ⇒  ∫_0 ^(π/2)     (dθ/( (√(1−x^2 cos^2 θ))))=(π/2) +Σ_(n=1) ^∞   (A_n /(n!))x^(2n)  ∫_0 ^(π/2)  cos^(2n) θ dθ but  w_n =∫_0 ^(π/2)  cos^(2n) θdθ is known (wallis integral) so  ∫_0 ^(π/2)    (dθ/( (√(1−x^2  cos^2 θ)))) = (π/2) +Σ_(n=1) ^∞  ((A_n  B_n )/(n!)) x^(2n)  .
wehave(1+u)α=1+αu+α(α1)2!u2+=1+n=1α(α1)(αn+1)n!unwithu∣<1wehavexcosθ∣<111x2cos2θ=(1(xcosθ)2)12=1+n=1(12)(121)(12n+1)n!x2ncos2nθletputAn=(12)(121)(12n+1)0π2dθ1x2cos2θ=π2+n=1Ann!x2n0π2cos2nθdθbutwn=0π2cos2nθdθisknown(wallisintegral)so0π2dθ1x2cos2θ=π2+n=1AnBnn!x2n.

Leave a Reply

Your email address will not be published. Required fields are marked *