Menu Close

let-give-x-lt-1-find-0-pi-2-d-1-x-2-cos-2-




Question Number 29972 by abdo imad last updated on 14/Feb/18
let give ∣x∣<1 find   ∫_0 ^(π/2)      (dθ/( (√(1−x^2 cos^2 θ)))) .
$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$
Commented by abdo imad last updated on 18/Feb/18
we have (1+u^ )^α   =1+αu +((α(α−1))/(2!))u^2  +...  =1+Σ_(n=1) ^∞   ((α(α−1)...(α−n+1))/(n!))u^n    with∣u∣<1 we have  ∣xcosθ∣<1 ⇒ (1/( (√(1−x^2 cos^2 θ))))=(1−(xcosθ)^2 )^(−(1/2))   =1+Σ_(n=1) ^∞   (((−(1/2))(−(1/2)−1)...(−(1/2)−n+1))/(n!)) x^(2n)  cos^(2n) θ let  put A_n =(−(1/2))(−(1/2)−1)...(−(1/2)−n+1) ⇒  ∫_0 ^(π/2)     (dθ/( (√(1−x^2 cos^2 θ))))=(π/2) +Σ_(n=1) ^∞   (A_n /(n!))x^(2n)  ∫_0 ^(π/2)  cos^(2n) θ dθ but  w_n =∫_0 ^(π/2)  cos^(2n) θdθ is known (wallis integral) so  ∫_0 ^(π/2)    (dθ/( (√(1−x^2  cos^2 θ)))) = (π/2) +Σ_(n=1) ^∞  ((A_n  B_n )/(n!)) x^(2n)  .
$${we}\:{have}\:\left(\mathrm{1}+{u}^{} \right)^{\alpha} \:\:=\mathrm{1}+\alpha{u}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}!}{u}^{\mathrm{2}} \:+… \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\alpha\left(\alpha−\mathrm{1}\right)…\left(\alpha−{n}+\mathrm{1}\right)}{{n}!}{u}^{{n}} \:\:\:{with}\mid{u}\mid<\mathrm{1}\:{we}\:{have} \\ $$$$\mid{xcos}\theta\mid<\mathrm{1}\:\Rightarrow\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}=\left(\mathrm{1}−\left({xcos}\theta\right)^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)…\left(−\frac{\mathrm{1}}{\mathrm{2}}−{n}+\mathrm{1}\right)}{{n}!}\:{x}^{\mathrm{2}{n}} \:{cos}^{\mathrm{2}{n}} \theta\:{let} \\ $$$${put}\:{A}_{{n}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)…\left(−\frac{\mathrm{1}}{\mathrm{2}}−{n}+\mathrm{1}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}=\frac{\pi}{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{A}_{{n}} }{{n}!}{x}^{\mathrm{2}{n}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}} \theta\:{d}\theta\:{but} \\ $$$${w}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}} \theta{d}\theta\:{is}\:{known}\:\left({wallis}\:{integral}\right)\:{so} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:{cos}^{\mathrm{2}} \theta}}\:=\:\frac{\pi}{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{A}_{{n}} \:{B}_{{n}} }{{n}!}\:{x}^{\mathrm{2}{n}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *