Menu Close

let-gt-0-calculate-1-i-x-2-dx-




Question Number 49344 by maxmathsup by imad last updated on 05/Dec/18
let α>0 calculate ∫_(−∞) ^(+∞)  (1+αi)^(−x^2 ) dx .
$${let}\:\alpha>\mathrm{0}\:{calculate}\:\int_{−\infty} ^{+\infty} \:\left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Commented by Abdo msup. last updated on 06/Dec/18
let A =∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx ⇒A =∫_(−∞) ^(+∞)  e^(−x^2 ln(1+αi)) dx  =_(x(√(ln(1+αi)))=t)     ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(ln(1+αi)))))  =((√π)/( (√(ln(1+αi)))))  but 1+αi =(√(1+α^2 ))((1/( (√(1+α^2 )))) +i(α/( (√(1+α^2 )))))  =r e^(iθ)  ⇒r =(1+α^2 )^(1/2)   and  tanθ =α ⇒θ =arctan(α) ⇒  ln(1+αi)=ln(r)+iθ =(1/2)ln(1+α^2 )+iarctan(α) ⇒  A = ((√π)/( (√((1/2)ln(1+α^2 )+i arctan(α)))))  leyZ=(1/2)ln(1+α^2 )+i arctan(α)  we have ∣Z∣=(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))) ⇒  Z =∣Z∣{((ln(1+α^2 ))/(2(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))))) +i((arctan(α))/( (√((1/4)ln^2 (1+α^2 )+arctan^2 (α)))))}  =r e^(iθ)   ⇒r =∣Z∣ and tanθ = ((2arctan(α))/(ln(1+α^2 ))) ⇒  θ =arctan(2 ((arctan(α))/(ln(1+α^2 ))))...be continued...
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}\:\Rightarrow{A}\:=\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} {ln}\left(\mathrm{1}+\alpha{i}\right)} {dx} \\ $$$$=_{{x}\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}={t}} \:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}} \\ $$$$=\frac{\sqrt{\pi}}{\:\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}}\:\:{but}\:\mathrm{1}+\alpha{i}\:=\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }}\:+{i}\frac{\alpha}{\:\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }}\right) \\ $$$$={r}\:{e}^{{i}\theta} \:\Rightarrow{r}\:=\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:{and}\:\:{tan}\theta\:=\alpha\:\Rightarrow\theta\:={arctan}\left(\alpha\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\alpha{i}\right)={ln}\left({r}\right)+{i}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{iarctan}\left(\alpha\right)\:\Rightarrow \\ $$$${A}\:=\:\frac{\sqrt{\pi}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{i}\:{arctan}\left(\alpha\right)}}\:\:{leyZ}=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{i}\:{arctan}\left(\alpha\right) \\ $$$${we}\:{have}\:\mid{Z}\mid=\sqrt{\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{arctan}^{\mathrm{2}} \left(\alpha\right)}\:\Rightarrow \\ $$$${Z}\:=\mid{Z}\mid\left\{\frac{{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}{\mathrm{2}\sqrt{\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{arctan}^{\mathrm{2}} \left(\alpha\right)}}\:+{i}\frac{{arctan}\left(\alpha\right)}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{1}+\alpha^{\mathrm{2}} \right)+{arctan}^{\mathrm{2}} \left(\alpha\right)}}\right\} \\ $$$$={r}\:{e}^{{i}\theta} \:\:\Rightarrow{r}\:=\mid{Z}\mid\:{and}\:{tan}\theta\:=\:\frac{\mathrm{2}{arctan}\left(\alpha\right)}{{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$$\theta\:={arctan}\left(\mathrm{2}\:\frac{{arctan}\left(\alpha\right)}{{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\right)…{be}\:{continued}… \\ $$
Answered by Smail last updated on 06/Dec/18
(1+αi)^(−x^2 ) =e^(−x^2 ln(1+αi))   u=x(√(ln(1+αi)))  dx=(du/( (√(ln(1+αi)))))  ∫_(−∞) ^∞ (1+αi)^(−x^2 ) dx=(1/( (√(ln(1+αi)))))∫_(−∞) ^∞ e^(−u^2 ) du  =((√π)/( (√(ln(1+αi)))))
$$\left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } ={e}^{−{x}^{\mathrm{2}} {ln}\left(\mathrm{1}+\alpha{i}\right)} \\ $$$${u}={x}\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)} \\ $$$${dx}=\frac{{du}}{\:\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}} \\ $$$$\int_{−\infty} ^{\infty} \left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}=\frac{\mathrm{1}}{\:\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}}\int_{−\infty} ^{\infty} {e}^{−{u}^{\mathrm{2}} } {du} \\ $$$$=\frac{\sqrt{\pi}}{\:\sqrt{{ln}\left(\mathrm{1}+\alpha{i}\right)}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *