Menu Close

let-gt-0-calculate-1-i-x-2-dx-




Question Number 49344 by maxmathsup by imad last updated on 05/Dec/18
let α>0 calculate ∫_(−∞) ^(+∞)  (1+αi)^(−x^2 ) dx .
letα>0calculate+(1+αi)x2dx.
Commented by Abdo msup. last updated on 06/Dec/18
let A =∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx ⇒A =∫_(−∞) ^(+∞)  e^(−x^2 ln(1+αi)) dx  =_(x(√(ln(1+αi)))=t)     ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(ln(1+αi)))))  =((√π)/( (√(ln(1+αi)))))  but 1+αi =(√(1+α^2 ))((1/( (√(1+α^2 )))) +i(α/( (√(1+α^2 )))))  =r e^(iθ)  ⇒r =(1+α^2 )^(1/2)   and  tanθ =α ⇒θ =arctan(α) ⇒  ln(1+αi)=ln(r)+iθ =(1/2)ln(1+α^2 )+iarctan(α) ⇒  A = ((√π)/( (√((1/2)ln(1+α^2 )+i arctan(α)))))  leyZ=(1/2)ln(1+α^2 )+i arctan(α)  we have ∣Z∣=(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))) ⇒  Z =∣Z∣{((ln(1+α^2 ))/(2(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))))) +i((arctan(α))/( (√((1/4)ln^2 (1+α^2 )+arctan^2 (α)))))}  =r e^(iθ)   ⇒r =∣Z∣ and tanθ = ((2arctan(α))/(ln(1+α^2 ))) ⇒  θ =arctan(2 ((arctan(α))/(ln(1+α^2 ))))...be continued...
letA=+(1+αi)x2dxA=+ex2ln(1+αi)dx=xln(1+αi)=t+et2dtln(1+αi)=πln(1+αi)but1+αi=1+α2(11+α2+iα1+α2)=reiθr=(1+α2)12andtanθ=αθ=arctan(α)ln(1+αi)=ln(r)+iθ=12ln(1+α2)+iarctan(α)A=π12ln(1+α2)+iarctan(α)leyZ=12ln(1+α2)+iarctan(α)wehaveZ∣=14ln2(1+α2)+arctan2(α)Z=∣Z{ln(1+α2)214ln2(1+α2)+arctan2(α)+iarctan(α)14ln2(1+α2)+arctan2(α)}=reiθr=∣Zandtanθ=2arctan(α)ln(1+α2)θ=arctan(2arctan(α)ln(1+α2))becontinued
Answered by Smail last updated on 06/Dec/18
(1+αi)^(−x^2 ) =e^(−x^2 ln(1+αi))   u=x(√(ln(1+αi)))  dx=(du/( (√(ln(1+αi)))))  ∫_(−∞) ^∞ (1+αi)^(−x^2 ) dx=(1/( (√(ln(1+αi)))))∫_(−∞) ^∞ e^(−u^2 ) du  =((√π)/( (√(ln(1+αi)))))
(1+αi)x2=ex2ln(1+αi)u=xln(1+αi)dx=duln(1+αi)(1+αi)x2dx=1ln(1+αi)eu2du=πln(1+αi)

Leave a Reply

Your email address will not be published. Required fields are marked *