Menu Close

let-gt-0-find-the-fourier-transform-of-f-t-e-a-2-t-2-




Question Number 33705 by math khazana by abdo last updated on 22/Apr/18
let  α>0  find the fourier transform of  f(t) = e^(−a^2 t^2 )
$${let}\:\:\alpha>\mathrm{0}\:\:{find}\:{the}\:{fourier}\:{transform}\:{of} \\ $$$${f}\left({t}\right)\:=\:{e}^{−{a}^{\mathrm{2}} {t}^{\mathrm{2}} } \\ $$
Commented by math khazana by abdo last updated on 22/Apr/18
F(f(x))= (1/( (√(2π)))) ∫_(−∞) ^(+∞)   f(t) e^(−ixt) dt  .
$${F}\left({f}\left({x}\right)\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\:\int_{−\infty} ^{+\infty} \:\:{f}\left({t}\right)\:{e}^{−{ixt}} {dt}\:\:. \\ $$
Answered by sma3l2996 last updated on 22/Apr/18
F(f(t))(x)=(1/( (√(2π))))∫_(−∞) ^∞ e^(−a^2 t^2 −ixt) dt=(1/( (√(2π))))∫_(−∞) ^(+∞) e^(−(a^2 t^2 +ixt)) dx  a^2 t^2 +ixt=a^2 t^2 +2×at×((ix)/(2a))+(((ix)/(2a)))^2 −(((ix)/(2a)))^2 =(at+((ix)/(2a)))^2 +(x^2 /(4a^2 ))  let  u=at+((ix)/(2a))⇒dt=(du/a)  F(f(t))(x)=(1/(a(√(2π))))∫_(−∞) ^∞ e^(−u^2 −(x^2 /(4a^2 ))) du=(e^(−(x^2 /(4a^2 ))) /(a(√(2π))))∫_(−∞) ^(+∞) e^(−u^2 ) du  we know that  ∫_(−∞) ^(+∞) e^(−x^2 ) dx=(√π)  so  F(f(t))(x)=((√2)/(2a))e^(−(x^2 /(4a^2 )))
$${F}\left({f}\left({t}\right)\right)\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\int_{−\infty} ^{\infty} {e}^{−{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{ixt}} {dt}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\int_{−\infty} ^{+\infty} {e}^{−\left({a}^{\mathrm{2}} {t}^{\mathrm{2}} +{ixt}\right)} {dx} \\ $$$${a}^{\mathrm{2}} {t}^{\mathrm{2}} +{ixt}={a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}×{at}×\frac{{ix}}{\mathrm{2}{a}}+\left(\frac{{ix}}{\mathrm{2}{a}}\right)^{\mathrm{2}} −\left(\frac{{ix}}{\mathrm{2}{a}}\right)^{\mathrm{2}} =\left({at}+\frac{{ix}}{\mathrm{2}{a}}\right)^{\mathrm{2}} +\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${let}\:\:{u}={at}+\frac{{ix}}{\mathrm{2}{a}}\Rightarrow{dt}=\frac{{du}}{{a}} \\ $$$${F}\left({f}\left({t}\right)\right)\left({x}\right)=\frac{\mathrm{1}}{{a}\sqrt{\mathrm{2}\pi}}\int_{−\infty} ^{\infty} {e}^{−{u}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }} {du}=\frac{{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }} }{{a}\sqrt{\mathrm{2}\pi}}\int_{−\infty} ^{+\infty} {e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${we}\:{know}\:{that}\:\:\int_{−\infty} ^{+\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\sqrt{\pi} \\ $$$${so} \\ $$$${F}\left({f}\left({t}\right)\right)\left({x}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{a}}{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *