Menu Close

let-gt-0-find-the-fourier-transform-of-f-t-e-a-2-t-2-




Question Number 33705 by math khazana by abdo last updated on 22/Apr/18
let  α>0  find the fourier transform of  f(t) = e^(−a^2 t^2 )
letα>0findthefouriertransformoff(t)=ea2t2
Commented by math khazana by abdo last updated on 22/Apr/18
F(f(x))= (1/( (√(2π)))) ∫_(−∞) ^(+∞)   f(t) e^(−ixt) dt  .
F(f(x))=12π+f(t)eixtdt.
Answered by sma3l2996 last updated on 22/Apr/18
F(f(t))(x)=(1/( (√(2π))))∫_(−∞) ^∞ e^(−a^2 t^2 −ixt) dt=(1/( (√(2π))))∫_(−∞) ^(+∞) e^(−(a^2 t^2 +ixt)) dx  a^2 t^2 +ixt=a^2 t^2 +2×at×((ix)/(2a))+(((ix)/(2a)))^2 −(((ix)/(2a)))^2 =(at+((ix)/(2a)))^2 +(x^2 /(4a^2 ))  let  u=at+((ix)/(2a))⇒dt=(du/a)  F(f(t))(x)=(1/(a(√(2π))))∫_(−∞) ^∞ e^(−u^2 −(x^2 /(4a^2 ))) du=(e^(−(x^2 /(4a^2 ))) /(a(√(2π))))∫_(−∞) ^(+∞) e^(−u^2 ) du  we know that  ∫_(−∞) ^(+∞) e^(−x^2 ) dx=(√π)  so  F(f(t))(x)=((√2)/(2a))e^(−(x^2 /(4a^2 )))
F(f(t))(x)=12πea2t2ixtdt=12π+e(a2t2+ixt)dxa2t2+ixt=a2t2+2×at×ix2a+(ix2a)2(ix2a)2=(at+ix2a)2+x24a2letu=at+ix2adt=duaF(f(t))(x)=1a2πeu2x24a2du=ex24a2a2π+eu2duweknowthat+ex2dx=πsoF(f(t))(x)=22aex24a2

Leave a Reply

Your email address will not be published. Required fields are marked *