Menu Close

let-gt-1-calculate-f-x-2-x-1-x-1-2-x-1-2-dx-




Question Number 33590 by abdo imad last updated on 19/Apr/18
let α >1  calculate f(α) = ∫_α ^(+∞)   ((x^2 −x+1)/((x−1)^2 (x+1)^2 )) dx .
letα>1calculatef(α)=α+x2x+1(x1)2(x+1)2dx.
Commented by abdo imad last updated on 22/Apr/18
we have f(α) = ∫_α ^(+∞)  ((x^2  −2x+1 +x)/((x−1)^2 (x+1)^2 ))dx  =∫_α ^(+∞)  (((x−1)^2  +x)/((x−1)^2 (x+1)^2 ))dx = ∫_α ^(+∞)   (dx/((x+1)^2 ))  +∫_α ^(+∞)   (x/((x−1)^2 (x+1)^2 ))dx  =[((−1)/(x+1))]_α ^(+∞)  +∫_α ^(+∞)     ((xdx)/((x−1)^2 (x+1)^2 )) =(1/(α+1)) + I let findI  F(x) = (x/((x−1)^2 (x+1)^2 ))=(a/(x−1)) +(b/((x−1)^2 )) +(c/(x+1)) +(d/((x+1)^2 ))  b= lim_(x→1) (x−1)^2 F(x) =(1/4)  d =lim_(x→−1) (x+1)^2 F(x)=((−1)/4) ⇒  F(x)=(a/(x−1))  +(1/(4(x−1)^2 )) +(c/(x+1))  +((−1)/(4(x+1)^2 ))  F(0) =0 =−a +(1/4) +c −(1/4) ⇒c=a ⇒  F(x) =(a/(x−1)) +(1/(4(x−1)^2 ))  +(a/(x+1)) −(1/(4(x+1)^2 ))  F(2)= (2/9) = a +(1/4) +(a/3) −(1/(36)) ⇒2=9a +(9/4) +3 −(1/4)  ⇒ 2 =9a +5 ⇒9a =−3 ⇒ a=−(1/3) ⇒  F(x)=−(1/(3(x−1))) +(1/(4(x−1)^2 )) −(1/(3(x+1))) −(1/(4(x+1)^2 ))  I =∫_α ^(+∞)  ( (1/(3(1−x))) −(1/(3(1+x))))dx +(1/4) ∫_α ^(+∞)  (dx/((x−1)^2 ))  −(1/4) ∫_α ^(+∞)   (dx/((x+1)^2 )) =[(1/3)ln∣((1−x)/(1+x))∣]_α ^(+∞)  −(1/4)[ (1/(x−1))]_α ^(+∞)   +(1/4)[ (1/(x+1))]_α ^(+∞)  =(1/3)ln∣((1−α)/(1+α))∣ +(1/(4(α−1))) −(1/(4(α+1))) ⇒  f(α) = (3/(4(α+1))) +(1/3)ln∣((1−α)/(1+α))∣ +(1/(4(α−1))) .
wehavef(α)=α+x22x+1+x(x1)2(x+1)2dx=α+(x1)2+x(x1)2(x+1)2dx=α+dx(x+1)2+α+x(x1)2(x+1)2dx=[1x+1]α++α+xdx(x1)2(x+1)2=1α+1+IletfindIF(x)=x(x1)2(x+1)2=ax1+b(x1)2+cx+1+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14F(x)=ax1+14(x1)2+cx+1+14(x+1)2F(0)=0=a+14+c14c=aF(x)=ax1+14(x1)2+ax+114(x+1)2F(2)=29=a+14+a31362=9a+94+3142=9a+59a=3a=13F(x)=13(x1)+14(x1)213(x+1)14(x+1)2I=α+(13(1x)13(1+x))dx+14α+dx(x1)214α+dx(x+1)2=[13ln1x1+x]α+14[1x1]α++14[1x+1]α+=13ln1α1+α+14(α1)14(α+1)f(α)=34(α+1)+13ln1α1+α+14(α1).

Leave a Reply

Your email address will not be published. Required fields are marked *