let-gt-1-calculate-f-x-2-x-1-x-1-2-x-1-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33590 by abdo imad last updated on 19/Apr/18 letα>1calculatef(α)=∫α+∞x2−x+1(x−1)2(x+1)2dx. Commented by abdo imad last updated on 22/Apr/18 wehavef(α)=∫α+∞x2−2x+1+x(x−1)2(x+1)2dx=∫α+∞(x−1)2+x(x−1)2(x+1)2dx=∫α+∞dx(x+1)2+∫α+∞x(x−1)2(x+1)2dx=[−1x+1]α+∞+∫α+∞xdx(x−1)2(x+1)2=1α+1+IletfindIF(x)=x(x−1)2(x+1)2=ax−1+b(x−1)2+cx+1+d(x+1)2b=limx→1(x−1)2F(x)=14d=limx→−1(x+1)2F(x)=−14⇒F(x)=ax−1+14(x−1)2+cx+1+−14(x+1)2F(0)=0=−a+14+c−14⇒c=a⇒F(x)=ax−1+14(x−1)2+ax+1−14(x+1)2F(2)=29=a+14+a3−136⇒2=9a+94+3−14⇒2=9a+5⇒9a=−3⇒a=−13⇒F(x)=−13(x−1)+14(x−1)2−13(x+1)−14(x+1)2I=∫α+∞(13(1−x)−13(1+x))dx+14∫α+∞dx(x−1)2−14∫α+∞dx(x+1)2=[13ln∣1−x1+x∣]α+∞−14[1x−1]α+∞+14[1x+1]α+∞=13ln∣1−α1+α∣+14(α−1)−14(α+1)⇒f(α)=34(α+1)+13ln∣1−α1+α∣+14(α−1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-decompose-F-x-1-x-2-4-x-3-2-2-calculate-4-dx-x-2-4-x-3-2-Next Next post: calculate-lim-x-0-2-1-cosx-sinx-x-3-1-x-2-1-4-sin-5-x-x-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.