Question Number 192087 by Mastermind last updated on 07/May/23
$$\mathrm{Let}\:\left\{\mathrm{H}_{\alpha} \right\}\:\in\:\Omega,\:\mathrm{be}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\: \\ $$$$\mathrm{subgroup}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group}\:\mathrm{G},\:\mathrm{then}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\cap_{\alpha\:\in\:\Omega} \mathrm{H}_{\alpha} . \\ $$$$ \\ $$$$ \\ $$
Commented by AST last updated on 07/May/23
$${Prove}\:{that}\:\cap_{\alpha\in\Omega} {H}_{\alpha} \:{equals}\:{what}? \\ $$
Commented by Mastermind last updated on 07/May/23
$$\mathrm{that}\:\mathrm{is}\:\mathrm{how}\:\mathrm{it}\:\mathrm{is}\:\mathrm{SIR} \\ $$
Commented by Mastermind last updated on 07/May/23
$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{subset}\:\mathrm{of}\:\mathrm{group}\:\mathrm{G} \\ $$