Menu Close

let-h-x-arctan-x-1-x-1-calculate-h-n-x-and-h-n-1-2-developp-f-x-at-integr-serie-at-x-0-1-




Question Number 62440 by mathsolverby Abdo last updated on 21/Jun/19
let h(x)= arctan(x+(1/x))  1)calculate h^((n)) (x) and h^((n)) (1)  2)developp f(x)at integr serie at x_0 =1
leth(x)=arctan(x+1x)1)calculateh(n)(x)andh(n)(1)2)developpf(x)atintegrserieatx0=1
Commented by mathmax by abdo last updated on 23/Jun/19
1) we have h^′ (x)=((1−(1/x^2 ))/(1+(x+(1/x))^2 )) =((x^2 −1)/(x^2  +(x^2  +1)^2 )) =((x^2 −1)/(x^2  +x^4  +2x^2 +1)) =((x^2 −1)/(x^4  +3x^2  +1))  x^2 =t ⇒h^′ (x) =g(t) =((t−1)/(t^2  +3t +1))  Δ =9−4 =5 ⇒t_1 =((−3+(√5))/2)  and t_2 =((−3−(√5))/2) ⇒g(t) =((t−1)/((t−t_1 )(t−t_2 )))  =((x^2 −1)/((x^2 −((−3+(√5))/2))(x^2  +((3+(√5))/2)))) =((x^2 −1)/((x^2 +((3−(√5))/2))(x^2  +((3+(√5))/2))))  =(x^2 −1)(1/( (√5))){ (1/(x^2  +((3−(√5))/2))) −(1/(x^2  +((3+(√5))/2)))} =(1/( (√5))){  ((x^2 −1)/(x^2  +((3−(√5))/2))) −((x^2 −1)/(x^2  +((3+(√5))/2)))}  =(1/( (√5))){ 1−((1+((3−(√5))/2))/(x^2  +((3−(√5))/2))) −(1−((1+((3+(√5))/2))/(x^2  +((3+(√5))/2))))}  =((5−(√5))/(2(√5))){ (1/(x^2 +((3−(√5))/2)))} +((5+(√5))/(2(√5))){  (1/(x^2  +((3+(√5))/2)))} let  α =(√((3−(√5))/2))  and β =(√((3+(√5))/2))  ⇒h^′ (x)=(((√5)−1)/2){    (1/(x^2  +α^2 )) +(1/(x^2  +β^2 ))}  =(((√5)−1)/2){  (1/((x+iα)(x−iα))) +(1/((x−iβ)(x+iβ)))}  =(((√5)−1)/2){  (1/(2iα)) ((1/(x−iα)) −(1/(x+iα))) +(1/(2iβ))( (1/(x−iβ)) −(1/(x+iβ)))}⇒  h^((n)) (x) =(((√5)−1)/(4iα)){ ((1/(x−iα)))^((n−1)) −((1/(x+iα)))^(n−1) }+(((√5)−1)/(4iβ)){ ((1/(x−iβ)))^((n−1)) −((1/(x+iβ)))^((n−1)) }  =(((√5)−1)/(4iα)){  (((−1)^(n−1) (n−1)!)/((x−iα)^n )) −(((−1)^(n−1) (n−1)!)/((x+iα)^n ))}  +(((√5)−1)/(4iβ)){ (((−1)^(n−1) (n−1)!)/((x−iβ)^n )) −(((−1)^(n−1) (n−1)!)/((x+iβ)^n ))}  =((((√5)−1)(−1)^(n−1) (n−1)!)/(4i)){(1/α)(  (1/((x−iα)^n )) −(1/((x+iα)^n ))) +(1/β)((1/((x−iβ)^n )) −(1/((x+iβ)^n )))}  =((((√5)−1)(−1)^(n−1) (n−1)!)/(4i)){((2i)/α) ((Im(x+iα)^n )/((x^2  +α^2 )^n )) +((2i)/β) ((Im(x+iβ)^n )/((x^2  +β^2 )^n ))}  h^((n)) (x)=(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(x+iα)^n )/(α(x^2  +α^2 )^n )) +((Im(x+iβ)^n )/((x^2  +β^2 )^n ))}  h^((n)) (1) =(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(1+iα)^n )/(α(1+α^2 )^n )) +((Im(1+iβ)^n )/((1+β^2 )^n ))} .  3)h(x) =Σ_(n=0) ^∞   ((h^((n)) (1))/(n!))(x−1)^n     and h^((n)) (1) is known.
1)wehaveh(x)=11x21+(x+1x)2=x21x2+(x2+1)2=x21x2+x4+2x2+1=x21x4+3x2+1x2=th(x)=g(t)=t1t2+3t+1Δ=94=5t1=3+52andt2=352g(t)=t1(tt1)(tt2)=x21(x23+52)(x2+3+52)=x21(x2+352)(x2+3+52)=(x21)15{1x2+3521x2+3+52}=15{x21x2+352x21x2+3+52}=15{11+352x2+352(11+3+52x2+3+52)}=5525{1x2+352}+5+525{1x2+3+52}letα=352andβ=3+52h(x)=512{1x2+α2+1x2+β2}=512{1(x+iα)(xiα)+1(xiβ)(x+iβ)}=512{12iα(1xiα1x+iα)+12iβ(1xiβ1x+iβ)}h(n)(x)=514iα{(1xiα)(n1)(1x+iα)n1}+514iβ{(1xiβ)(n1)(1x+iβ)(n1)}=514iα{(1)n1(n1)!(xiα)n(1)n1(n1)!(x+iα)n}+514iβ{(1)n1(n1)!(xiβ)n(1)n1(n1)!(x+iβ)n}=(51)(1)n1(n1)!4i{1α(1(xiα)n1(x+iα)n)+1β(1(xiβ)n1(x+iβ)n)}=(51)(1)n1(n1)!4i{2iαIm(x+iα)n(x2+α2)n+2iβIm(x+iβ)n(x2+β2)n}h(n)(x)=512(1)n1(n1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)n(x2+β2)n}h(n)(1)=512(1)n1(n1)!{Im(1+iα)nα(1+α2)n+Im(1+iβ)n(1+β2)n}.3)h(x)=n=0h(n)(1)n!(x1)nandh(n)(1)isknown.
Commented by mathmax by abdo last updated on 23/Jun/19
error of typo     h^((n)) (x) =(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(x+iα)^n )/(α(x^2  +α^2 )^n )) +((Im(x+iβ)^n )/(β(x^2  +β^2 )^n ))}.
erroroftypoh(n)(x)=512(1)n1(n1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)nβ(x2+β2)n}.

Leave a Reply

Your email address will not be published. Required fields are marked *