let-h-x-arctan-x-1-x-1-calculate-h-n-x-and-h-n-1-2-developp-f-x-at-integr-serie-at-x-0-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 62440 by mathsolverby Abdo last updated on 21/Jun/19 leth(x)=arctan(x+1x)1)calculateh(n)(x)andh(n)(1)2)developpf(x)atintegrserieatx0=1 Commented by mathmax by abdo last updated on 23/Jun/19 1)wehaveh′(x)=1−1x21+(x+1x)2=x2−1x2+(x2+1)2=x2−1x2+x4+2x2+1=x2−1x4+3x2+1x2=t⇒h′(x)=g(t)=t−1t2+3t+1Δ=9−4=5⇒t1=−3+52andt2=−3−52⇒g(t)=t−1(t−t1)(t−t2)=x2−1(x2−−3+52)(x2+3+52)=x2−1(x2+3−52)(x2+3+52)=(x2−1)15{1x2+3−52−1x2+3+52}=15{x2−1x2+3−52−x2−1x2+3+52}=15{1−1+3−52x2+3−52−(1−1+3+52x2+3+52)}=5−525{1x2+3−52}+5+525{1x2+3+52}letα=3−52andβ=3+52⇒h′(x)=5−12{1x2+α2+1x2+β2}=5−12{1(x+iα)(x−iα)+1(x−iβ)(x+iβ)}=5−12{12iα(1x−iα−1x+iα)+12iβ(1x−iβ−1x+iβ)}⇒h(n)(x)=5−14iα{(1x−iα)(n−1)−(1x+iα)n−1}+5−14iβ{(1x−iβ)(n−1)−(1x+iβ)(n−1)}=5−14iα{(−1)n−1(n−1)!(x−iα)n−(−1)n−1(n−1)!(x+iα)n}+5−14iβ{(−1)n−1(n−1)!(x−iβ)n−(−1)n−1(n−1)!(x+iβ)n}=(5−1)(−1)n−1(n−1)!4i{1α(1(x−iα)n−1(x+iα)n)+1β(1(x−iβ)n−1(x+iβ)n)}=(5−1)(−1)n−1(n−1)!4i{2iαIm(x+iα)n(x2+α2)n+2iβIm(x+iβ)n(x2+β2)n}h(n)(x)=5−12(−1)n−1(n−1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)n(x2+β2)n}h(n)(1)=5−12(−1)n−1(n−1)!{Im(1+iα)nα(1+α2)n+Im(1+iβ)n(1+β2)n}.3)h(x)=∑n=0∞h(n)(1)n!(x−1)nandh(n)(1)isknown. Commented by mathmax by abdo last updated on 23/Jun/19 erroroftypoh(n)(x)=5−12(−1)n−1(n−1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)nβ(x2+β2)n}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: g-l-sin-0-Exact-form-May-include-elliptic-integral-Next Next post: Some-Values-n-e-pin-2-pi-1-4-3-4-n-e-2pin-2-pi-1-4-3-4-6-4-2-1-4-2-n-e-6pin-2-pi-1-4-3-4-1-1-4-3-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.