Menu Close

let-I-0-1-ln-1-x-1-x-2-dx-and-J-0-1-2-x-1-x-2-1-xy-dxdy-find-J-by-two-method-and-deduce-the-valueof-I-




Question Number 78707 by abdomathmax last updated on 20/Jan/20
let I =∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx and   J =∫∫_([0,1]^2 )     (x/((1+x^2 )(1+xy)))dxdy  find J by two method and deduce  the valueof I
letI=01ln(1+x)1+x2dxandJ=[0,1]2x(1+x2)(1+xy)dxdyfindJbytwomethodanddeducethevalueofI
Answered by mind is power last updated on 20/Jan/20
J=∫_0 ^1 (1/(1+x^2 ))∫_0 ^1 (x/(1+xy))dydx  =∫_0 ^1 (1/(1+x^2 ))[ln(1+xy)]_0 ^1 dx  =∫_0 ^1 ((ln(1+x))/(1+x^2 ))=I  By Fubini  J=∫_0 ^1 ∫_0 ^1 (x/((1+x^2 )(1+xy)))dxdy    (x/((1+x^2 )(1+xy)))=((−y)/(1+y^2 )).(1/(1+xy^ ))+((cx+d)/(1+x^2 ))  d=(y/(1+y^2 ))  (1/(1+y^2 ))=c⇒(x/((1+x^2 )(1+xy)))=(1/(1+y^2 ))(((−y)/(1+xy))+((x+y)/(1+x^2 )))  J=∫_0 ^1 ((1/(1+y^2 ))(∫_0 ^1 {((−y)/(1+xy))+((x+y)/(1+x^2 ))}dx)dy)  =∫_0 ^1 ((1/(1+y^2 )){[_0 ^1 −ln(1+xy)+((ln(1+x^2 ))/2)+yarctan(x)]dy  =∫_0 ^1 {((−ln(1+y))/(1+y^2 ))+((ln(2))/(2(1+y^2 )))+(y/(1+y^2 )).(π/4)}dy  J=−∫_0 ^1 ((ln(1+y)dy)/(1+y^2 ))+((ln(2))/2)∫_0 ^1 (dy/(1+y^2 ))+(π/4)∫_0 ^1 (y/(1+y^2 ))dy=I by first  ⇒−I+((ln(2))/2).(π/4)+(π/4)[((ln(1+y^2 ))/2)]_0 ^1 =I  ⇒2I=((πln(2))/4)⇒I=((πln(2))/8)=πln(2^(1/8) )
J=0111+x201x1+xydydx=0111+x2[ln(1+xy)]01dx=01ln(1+x)1+x2=IByFubiniJ=0101x(1+x2)(1+xy)dxdyx(1+x2)(1+xy)=y1+y2.11+xy+cx+d1+x2d=y1+y211+y2=cx(1+x2)(1+xy)=11+y2(y1+xy+x+y1+x2)J=01(11+y2(01{y1+xy+x+y1+x2}dx)dy)=01(11+y2{[01ln(1+xy)+ln(1+x2)2+yarctan(x)]dy=01{ln(1+y)1+y2+ln(2)2(1+y2)+y1+y2.π4}dyJ=01ln(1+y)dy1+y2+ln(2)201dy1+y2+π401y1+y2dy=IbyfirstI+ln(2)2.π4+π4[ln(1+y2)2]01=I2I=πln(2)4I=πln(2)8=πln(218)

Leave a Reply

Your email address will not be published. Required fields are marked *