let-I-0-1-ln-1-x-1-x-2-dx-and-J-0-1-2-x-1-x-2-1-xy-dxdy-find-J-by-two-method-and-deduce-the-valueof-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 78707 by abdomathmax last updated on 20/Jan/20 letI=∫01ln(1+x)1+x2dxandJ=∫∫[0,1]2x(1+x2)(1+xy)dxdyfindJbytwomethodanddeducethevalueofI Answered by mind is power last updated on 20/Jan/20 J=∫0111+x2∫01x1+xydydx=∫0111+x2[ln(1+xy)]01dx=∫01ln(1+x)1+x2=IByFubiniJ=∫01∫01x(1+x2)(1+xy)dxdyx(1+x2)(1+xy)=−y1+y2.11+xy+cx+d1+x2d=y1+y211+y2=c⇒x(1+x2)(1+xy)=11+y2(−y1+xy+x+y1+x2)J=∫01(11+y2(∫01{−y1+xy+x+y1+x2}dx)dy)=∫01(11+y2{[01−ln(1+xy)+ln(1+x2)2+yarctan(x)]dy=∫01{−ln(1+y)1+y2+ln(2)2(1+y2)+y1+y2.π4}dyJ=−∫01ln(1+y)dy1+y2+ln(2)2∫01dy1+y2+π4∫01y1+y2dy=Ibyfirst⇒−I+ln(2)2.π4+π4[ln(1+y2)2]01=I⇒2I=πln(2)4⇒I=πln(2)8=πln(218) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-144237Next Next post: calculate-0-1-2-dxdy-x-y-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.