Menu Close

let-I-0-dx-x-4-i-and-J-0-dx-x-4-i-1-find-values-of-I-and-J-2-calculate-I-J-3-calculate-0-dx-x-8-1-




Question Number 43808 by maxmathsup by imad last updated on 15/Sep/18
let I = ∫_0 ^∞   (dx/(x^4 −i)) and J = ∫_0 ^∞     (dx/(x^4  +i))  1) find  values of I and J  2) calculate I +J  3) calculate ∫_0 ^∞    (dx/(x^(8 )  +1))
letI=0dxx4iandJ=0dxx4+i1)findvaluesofIandJ2)calculateI+J3)calculate0dxx8+1
Commented by maxmathsup by imad last updated on 21/Sep/18
1) we have i =(e^((iπ)/8) )^4  changement   x =t e^((iπ)/8)   give  J= ∫_0 ^∞   ((e^((iπ)/8)  dt)/(i t^4  +i)) =−i e^((iπ)/8)   ∫_0 ^∞    (dt/(1+t^4 )) also cha7gement t =u^(1/4)  ⇒  ∫_0 ^∞   (dt/(1+t^4 )) =∫_0 ^∞    (1/(1+u)) (1/4) u^((1/4)−1) du =(1/4) (π/(sin((π/4)))) =(π/4) (1/((√2)/2)) =(π/(2(√2))) ⇒  J =−((iπ)/(2(√2))) e^((iπ)/8)   and I =J^−  =((iπ)/(2(√2))) e^(−((iπ)/8))   2) we have I +J =((iπ)/(2(√2))) e^(−((iπ)/8))  −((iπ)/(2(√2))) e^((iπ)/8)  =−((iπ)/(2(√2))){e^((iπ)/8)  −e^(−i(π/8)) }  =−((iπ)/(2(√2)))(2i sin((π/8))) =(π/( (√2))) ((√(2−(√2)))/2) =(π/(2(√2)))(√(2−(√2))).  3) we have I −J =∫_0 ^∞   ((1/(x^4 −i)) −(1/(x^4  +i)))dx  =∫_0 ^∞   ((2i)/(x^8  +1)) dx  ⇒∫_0 ^∞   (dx/(1+x^8 )) =(1/(2i)){I −J} but   I −J = ((iπ)/(2(√2))) e^(−((iπ)/8))   +((iπ)/(2(√2))) e^((iπ)/8)  =((iπ)/(2(√2))) (2cos((π/8))} =((iπ)/( (√2))) ((√(2+(√2)))/2) ⇒  ∫_0 ^∞    (dx/(1+x^8 )) =(1/(2i)) ((iπ)/(2(√2)))(√(2+(√2)))=(π/(4(√2))) (√(2+(√2))).  remark we have I +J =∫_0 ^∞  ((1/(x^4 −i)) +(1/(x^4  +i)))dx  = ∫_0 ^∞   ((2x^4 )/(1+x^8 )) dx =(π/(2(√2)))(√(2−(√2))) ⇒∫_0 ^∞     (x^4 /(1+x^8 ))dx =(π/(4(√2)))(√(2−(√2))).
1)wehavei=(eiπ8)4changementx=teiπ8giveJ=0eiπ8dtit4+i=ieiπ80dt1+t4alsocha7gementt=u140dt1+t4=011+u14u141du=14πsin(π4)=π4122=π22J=iπ22eiπ8andI=J=iπ22eiπ82)wehaveI+J=iπ22eiπ8iπ22eiπ8=iπ22{eiπ8eiπ8}=iπ22(2isin(π8))=π2222=π2222.3)wehaveIJ=0(1x4i1x4+i)dx=02ix8+1dx0dx1+x8=12i{IJ}butIJ=iπ22eiπ8+iπ22eiπ8=iπ22(2cos(π8)}=iπ22+220dx1+x8=12iiπ222+2=π422+2.remarkwehaveI+J=0(1x4i+1x4+i)dx=02x41+x8dx=π22220x41+x8dx=π4222.

Leave a Reply

Your email address will not be published. Required fields are marked *