let-I-0-dx-x-4-i-and-J-0-dx-x-4-i-1-find-values-of-I-and-J-2-calculate-I-J-3-calculate-0-dx-x-8-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 43808 by maxmathsup by imad last updated on 15/Sep/18 letI=∫0∞dxx4−iandJ=∫0∞dxx4+i1)findvaluesofIandJ2)calculateI+J3)calculate∫0∞dxx8+1 Commented by maxmathsup by imad last updated on 21/Sep/18 1)wehavei=(eiπ8)4changementx=teiπ8giveJ=∫0∞eiπ8dtit4+i=−ieiπ8∫0∞dt1+t4alsocha7gementt=u14⇒∫0∞dt1+t4=∫0∞11+u14u14−1du=14πsin(π4)=π4122=π22⇒J=−iπ22eiπ8andI=J−=iπ22e−iπ82)wehaveI+J=iπ22e−iπ8−iπ22eiπ8=−iπ22{eiπ8−e−iπ8}=−iπ22(2isin(π8))=π22−22=π222−2.3)wehaveI−J=∫0∞(1x4−i−1x4+i)dx=∫0∞2ix8+1dx⇒∫0∞dx1+x8=12i{I−J}butI−J=iπ22e−iπ8+iπ22eiπ8=iπ22(2cos(π8)}=iπ22+22⇒∫0∞dx1+x8=12iiπ222+2=π422+2.remarkwehaveI+J=∫0∞(1x4−i+1x4+i)dx=∫0∞2x41+x8dx=π222−2⇒∫0∞x41+x8dx=π422−2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-174877Next Next post: lim-n-0-1-e-x-2-sin-nx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.