let-I-0-e-tx-sint-dt-with-x-gt-0-find-the-value-of-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35589 by abdo mathsup 649 cc last updated on 20/May/18 letI=∫0∞e−tx∣sint∣dtwithx>0findthevalueofI. Commented by abdo mathsup 649 cc last updated on 21/May/18 I=∑n=0∞∫nπ(n+1)πe−tx∣sint∣dtchangementt=nπ+ugiveI=∑n=0∞∫0πe−nπxe−xu∣sinu∣du=∑n=0∞e−nπx∫0πe−xusinudubutA(x)=∫0πe−xusin(u)du=Im(∫0πe−xu+iudu)=Im(∫0πe(−x+i)udu)but∫0πe(−x+i)udu=[1−x+ie(−x+i)u]0π=−1x−i{e−xπ+iπ−1}=1+e−πxx−i=x+ix2+1(1+e−πx)⇒A(x)=1+e−πx1+x2∑n=0∞e−nπx=∑n=0∞(e−πx)n=11−e−πxsoI=11−e−πx1+e−πx1+x2⇒I=1+e−πx(1+x2)(1−e−πx). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-t-0-1-e-t-1-x-2-1-x-2-dx-with-t-0-find-a-simple-form-of-f-t-Next Next post: find-J-0-1-e-ax-ln-1-e-bx-dx-with-a-gt-0-and-b-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.