Menu Close

let-I-0-e-tx-sint-dt-with-x-gt-0-find-the-value-of-I-




Question Number 35589 by abdo mathsup 649 cc last updated on 20/May/18
let   I  =  ∫_0 ^∞   e^(−tx)  ∣sint∣dt  with x>0  find the value of I .
letI=0etxsintdtwithx>0findthevalueofI.
Commented by abdo mathsup 649 cc last updated on 21/May/18
I = Σ_(n=0) ^∞   ∫_(nπ) ^((n+1)π)  e^(−tx) ∣sint∣dt  changement  t =nπ  + u give  I  = Σ_(n=0) ^∞     ∫_0 ^π     e^(−nπx)  e^(−xu)  ∣sinu∣du  = Σ_(n=0) ^∞    e^(−nπx)     ∫_0 ^π   e^(−xu)  sinu du    but  A(x)=∫_0 ^π  e^(−xu)  sin(u)du =Im( ∫_0 ^π  e^(−xu +iu) du)  =Im(  ∫_0 ^π   e^((−x+i)u) du) but  ∫_0 ^π   e^((−x+i)u) du  =[ (1/(−x+i)) e^((−x+i)u) ]_0 ^π   =((−1)/(x−i)){ e^(−xπ  +iπ)  −1}= ((1 +e^(−πx) )/(x−i))  =((x+i)/(x^2 +1))( 1+e^(−πx) )⇒ A(x)= ((1+e^(−πx) )/(1+x^2 ))  Σ_(n=0) ^∞    e^(−nπx)   = Σ_(n=0) ^∞  (e^(−πx) )^n  = (1/(1−e^(−πx) ))  so  I = (1/(1−e^(−πx) )) ((1 +e^(−πx) )/(1+x^2 )) ⇒ I =  ((1+e^(−πx) )/((1+x^2 )(1−e^(−πx) ))) .
I=n=0nπ(n+1)πetxsintdtchangementt=nπ+ugiveI=n=00πenπxexusinudu=n=0enπx0πexusinudubutA(x)=0πexusin(u)du=Im(0πexu+iudu)=Im(0πe(x+i)udu)but0πe(x+i)udu=[1x+ie(x+i)u]0π=1xi{exπ+iπ1}=1+eπxxi=x+ix2+1(1+eπx)A(x)=1+eπx1+x2n=0enπx=n=0(eπx)n=11eπxsoI=11eπx1+eπx1+x2I=1+eπx(1+x2)(1eπx).

Leave a Reply

Your email address will not be published. Required fields are marked *