Menu Close

let-I-0-e-x-cos-2-2pix-dx-and-J-0-e-x-sin-2-2pix-dx-1-calculate-I-J-and-I-J-2-find-the-value-of-I-and-J-




Question Number 37884 by prof Abdo imad last updated on 18/Jun/18
let I  = ∫_0 ^∞  e^(−[x])  cos^2 (2πx)dx and   J =∫_0 ^∞   e^(−[x])  sin^2 (2πx) dx  1) calculate I +J and I −J  2) find the value of  I and J .
letI=0e[x]cos2(2πx)dxandJ=0e[x]sin2(2πx)dx1)calculateI+JandIJ2)findthevalueofIandJ.
Commented by math khazana by abdo last updated on 20/Jun/18
1) I+J = ∫_0 ^∞    e^(−[x]) dx=Σ_(n=0) ^∞   ∫_n ^(n+1) e^(−n) dx  =Σ_(n=0) ^∞  (e^(−1) )^n  = (1/(1−e^(−1) )) = (e/(e−1)) .  I −J = ∫_0 ^∞   e^(−[x])  cos(4πx)dx  =Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−n)  cos(4πx)dx  =Σ_(n=0) ^∞  e^(−n)   ∫_n ^(n+1)  cos(4πx)dx  = Σ_(n=0) ^∞  e^(−n) [ (1/(4π))sin(4πx)]_n ^(n+1)   = (1/(4π)) Σ_(n=0) ^∞  e^(−n) { sin(4π(n+1))−sin(4πn)}  =0 ⇒ I =J    = (e/(2(e−1))) .
1)I+J=0e[x]dx=n=0nn+1endx=n=0(e1)n=11e1=ee1.IJ=0e[x]cos(4πx)dx=n=0nn+1encos(4πx)dx=n=0ennn+1cos(4πx)dx=n=0en[14πsin(4πx)]nn+1=14πn=0en{sin(4π(n+1))sin(4πn)}=0I=J=e2(e1).

Leave a Reply

Your email address will not be published. Required fields are marked *