Menu Close

let-I-0-e-x-cos-2-pi-x-dx-and-J-0-e-x-sin-2-pi-x-dx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J-




Question Number 37815 by prof Abdo imad last updated on 17/Jun/18
let I  = ∫_0 ^∞   e^(−x)  cos^2 (π[x])dx and  J = ∫_0 ^∞   e^(−x)  sin^2 (π[x])dx  1) calculate I +J  and I −J  2) find the values of I and J.
letI=0excos2(π[x])dxandJ=0exsin2(π[x])dx1)calculateI+JandIJ2)findthevaluesofIandJ.
Commented by prof Abdo imad last updated on 18/Jun/18
1) I +J = ∫_0 ^∞   e^(−x) {cos^2 (π[x]) +sin^2 (π[x])}dx  =∫_0 ^∞  e^(−x) dx=[ −e^(−x) ]_0 ^(+∞)  =1  I−J =∫_0 ^∞   e^(−x) { cos^2 (π[x]) −sin^2 (π[x])}dx  = ∫_0 ^∞   e^(−x) cos(2π[x])dx  =Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−x)  cos(2πn) dx  =Σ_(n=0) ^∞  [ −e^(−x) ]_n ^(n+1)   =Σ_(n=0) ^∞ (  e^(−n)  −e^(−(n+1)) )  = (1−e^(−1) ) Σ_(n=0) ^∞  (e^(−1) )^n   =(1−e^(−1) )(1/(1−e^(−1) )) =1 ⇒ I +J =1 and I−J =1 ⇒  I =1 and  J =0 .
1)I+J=0ex{cos2(π[x])+sin2(π[x])}dx=0exdx=[ex]0+=1IJ=0ex{cos2(π[x])sin2(π[x])}dx=0excos(2π[x])dx=n=0nn+1excos(2πn)dx=n=0[ex]nn+1=n=0(ene(n+1))=(1e1)n=0(e1)n=(1e1)11e1=1I+J=1andIJ=1I=1andJ=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
I+J=∫_0 ^∞ e^(−x) {cos^2 (Π[x])+sin^2 (Π[x])}dx  =∫_0 ^∞ e^(−x) dx=∣(e^(−x) /(−1))∣_0 ^∞ =−1((1/e^∞ )−(1/e^0 ))=1  I−J=∫_0 ^∞ e^(−x) cos(2Π[x]) dx  now the value of [x] =0     1>x≥0         [x]=1      2>x≥1         [x]=2     3>x≥2  so for all values     ∞>x≥0  value of cos(2Π[x])=1  so ∫_0 ^1 e^(−x) dx+∫_1 ^2 e^(−x) dx+∫_2 ^3 e^(−x) dx+...infinity  =−1{(e^(−1) −e^(−0) )+(e^(−2) −e^(−1) )+(e^(−3) −e^(−2) )+..  =−1(−e^0    others terms cancelled out...  =1  pls check and comment...
I+J=0ex{cos2(Π[x])+sin2(Π[x])}dx=0exdx=∣ex10=1(1e1e0)=1IJ=0excos(2Π[x])dxnowthevalueof[x]=01>x0[x]=12>x1[x]=23>x2soforallvalues>x0valueofcos(2Π[x])=1so01exdx+12exdx+23exdx+infinity=1{(e1e0)+(e2e1)+(e3e2)+..=1(e0otherstermscancelledout=1plscheckandcomment

Leave a Reply

Your email address will not be published. Required fields are marked *