Menu Close

let-I-0-e-x-cos-2-pi-x-dx-and-J-0-e-x-sin-2-pi-x-dx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J-




Question Number 37815 by prof Abdo imad last updated on 17/Jun/18
let I  = ∫_0 ^∞   e^(−x)  cos^2 (π[x])dx and  J = ∫_0 ^∞   e^(−x)  sin^2 (π[x])dx  1) calculate I +J  and I −J  2) find the values of I and J.
$${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:\:{and}\:{I}\:−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:{I}\:{and}\:{J}. \\ $$
Commented by prof Abdo imad last updated on 18/Jun/18
1) I +J = ∫_0 ^∞   e^(−x) {cos^2 (π[x]) +sin^2 (π[x])}dx  =∫_0 ^∞  e^(−x) dx=[ −e^(−x) ]_0 ^(+∞)  =1  I−J =∫_0 ^∞   e^(−x) { cos^2 (π[x]) −sin^2 (π[x])}dx  = ∫_0 ^∞   e^(−x) cos(2π[x])dx  =Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−x)  cos(2πn) dx  =Σ_(n=0) ^∞  [ −e^(−x) ]_n ^(n+1)   =Σ_(n=0) ^∞ (  e^(−n)  −e^(−(n+1)) )  = (1−e^(−1) ) Σ_(n=0) ^∞  (e^(−1) )^n   =(1−e^(−1) )(1/(1−e^(−1) )) =1 ⇒ I +J =1 and I−J =1 ⇒  I =1 and  J =0 .
$$\left.\mathrm{1}\right)\:{I}\:+{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \left\{{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\:+{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {dx}=\left[\:−{e}^{−{x}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{1} \\ $$$${I}−{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \left\{\:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\:−{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {cos}\left(\mathrm{2}\pi\left[{x}\right]\right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−{x}} \:{cos}\left(\mathrm{2}\pi{n}\right)\:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left[\:−{e}^{−{x}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:\:{e}^{−{n}} \:−{e}^{−\left({n}+\mathrm{1}\right)} \right) \\ $$$$=\:\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{−\mathrm{1}} \right)^{{n}} \\ $$$$=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\:=\mathrm{1}\:\Rightarrow\:{I}\:+{J}\:=\mathrm{1}\:{and}\:{I}−{J}\:=\mathrm{1}\:\Rightarrow \\ $$$${I}\:=\mathrm{1}\:{and}\:\:{J}\:=\mathrm{0}\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
I+J=∫_0 ^∞ e^(−x) {cos^2 (Π[x])+sin^2 (Π[x])}dx  =∫_0 ^∞ e^(−x) dx=∣(e^(−x) /(−1))∣_0 ^∞ =−1((1/e^∞ )−(1/e^0 ))=1  I−J=∫_0 ^∞ e^(−x) cos(2Π[x]) dx  now the value of [x] =0     1>x≥0         [x]=1      2>x≥1         [x]=2     3>x≥2  so for all values     ∞>x≥0  value of cos(2Π[x])=1  so ∫_0 ^1 e^(−x) dx+∫_1 ^2 e^(−x) dx+∫_2 ^3 e^(−x) dx+...infinity  =−1{(e^(−1) −e^(−0) )+(e^(−2) −e^(−1) )+(e^(−3) −e^(−2) )+..  =−1(−e^0    others terms cancelled out...  =1  pls check and comment...
$${I}+{J}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left\{{cos}^{\mathrm{2}} \left(\Pi\left[{x}\right]\right)+{sin}^{\mathrm{2}} \left(\Pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {dx}=\mid\frac{{e}^{−{x}} }{−\mathrm{1}}\mid_{\mathrm{0}} ^{\infty} =−\mathrm{1}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=\mathrm{1} \\ $$$${I}−{J}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {cos}\left(\mathrm{2}\Pi\left[{x}\right]\right)\:{dx} \\ $$$${now}\:{the}\:{value}\:{of}\:\left[{x}\right]\:=\mathrm{0}\:\:\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left[{x}\right]=\mathrm{1}\:\:\:\:\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\left[{x}\right]=\mathrm{2}\:\:\:\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$$${so}\:{for}\:{all}\:{values}\:\:\:\:\:\infty>{x}\geqslant\mathrm{0} \\ $$$${value}\:{of}\:{cos}\left(\mathrm{2}\Pi\left[{x}\right]\right)=\mathrm{1} \\ $$$${so}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {dx}+\int_{\mathrm{1}} ^{\mathrm{2}} {e}^{−{x}} {dx}+\int_{\mathrm{2}} ^{\mathrm{3}} {e}^{−{x}} {dx}+…{infinity} \\ $$$$=−\mathrm{1}\left\{\left({e}^{−\mathrm{1}} −{e}^{−\mathrm{0}} \right)+\left({e}^{−\mathrm{2}} −{e}^{−\mathrm{1}} \right)+\left({e}^{−\mathrm{3}} −{e}^{−\mathrm{2}} \right)+..\right. \\ $$$$=−\mathrm{1}\left(−{e}^{\mathrm{0}} \:\:\:{others}\:{terms}\:{cancelled}\:{out}…\right. \\ $$$$=\mathrm{1} \\ $$$${pls}\:{check}\:{and}\:{comment}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *