let-I-0-e-x-cos-2-pi-x-dx-and-J-0-e-x-sin-2-pi-x-dx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37815 by prof Abdo imad last updated on 17/Jun/18 letI=∫0∞e−xcos2(π[x])dxandJ=∫0∞e−xsin2(π[x])dx1)calculateI+JandI−J2)findthevaluesofIandJ. Commented by prof Abdo imad last updated on 18/Jun/18 1)I+J=∫0∞e−x{cos2(π[x])+sin2(π[x])}dx=∫0∞e−xdx=[−e−x]0+∞=1I−J=∫0∞e−x{cos2(π[x])−sin2(π[x])}dx=∫0∞e−xcos(2π[x])dx=∑n=0∞∫nn+1e−xcos(2πn)dx=∑n=0∞[−e−x]nn+1=∑n=0∞(e−n−e−(n+1))=(1−e−1)∑n=0∞(e−1)n=(1−e−1)11−e−1=1⇒I+J=1andI−J=1⇒I=1andJ=0. Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18 I+J=∫0∞e−x{cos2(Π[x])+sin2(Π[x])}dx=∫0∞e−xdx=∣e−x−1∣0∞=−1(1e∞−1e0)=1I−J=∫0∞e−xcos(2Π[x])dxnowthevalueof[x]=01>x⩾0[x]=12>x⩾1[x]=23>x⩾2soforallvalues∞>x⩾0valueofcos(2Π[x])=1so∫01e−xdx+∫12e−xdx+∫23e−xdx+…infinity=−1{(e−1−e−0)+(e−2−e−1)+(e−3−e−2)+..=−1(−e0otherstermscancelledout…=1plscheckandcomment… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-A-n-1-n-1-x-x-arctan-x-1-x-dx-then-calculate-lim-n-A-n-Next Next post: find-lim-x-0-ln-x-e-sinx-x-2-sh-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.