Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{6}} {x}\:{dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{6}} {xdx} \\ $$$$\left.\mathrm{1}\right){cslculate}\:{I}\:+{J}\:\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J} \\ $$
Commented by prof Abdo imad last updated on 01/Aug/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{I}\:+{J}\:=\frac{\mathrm{5}\pi}{\mathrm{16}}\:{and}\:{I}−{J}\:=\mathrm{0}\:\Rightarrow \\ $$$${I}={J}\:\:{and}\:\mathrm{2}{I}\:=\frac{\mathrm{5}\pi}{\mathrm{16}}\:\Rightarrow\:{I}\:={J}\:=\frac{\mathrm{5}\pi}{\mathrm{32}}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
$${I}+{J}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left({cos}^{\mathrm{6}} {x}+{sin}^{\mathrm{6}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left({cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} −\mathrm{3}{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} {x}\left({cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}\right)\:\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left\{\mathrm{1}−\mathrm{3}\left(\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}\right)\right\}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}−\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left(\mathrm{1}−{cos}^{\mathrm{2}} \mathrm{2}{x}\:\right)\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}−\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}+\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\mathrm{1}+{cos}\mathrm{4}{x}}{\mathrm{2}}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}−\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}+\frac{\mathrm{3}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {dx}+\frac{\mathrm{3}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{4}{x}\:{dx} \\ $$$$=\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}{x}+\frac{\mathrm{3}}{\mathrm{8}}{x}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} +\frac{\mathrm{3}}{\mathrm{8}}×\mid\frac{{sin}\mathrm{4}{x}}{\mathrm{4}}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{8}}\right)\left(\frac{\Pi}{\mathrm{2}}\right)+\mathrm{0} \\ $$$$=\left(\frac{\mathrm{8}−\mathrm{6}+\mathrm{3}}{\mathrm{8}}\right)\left(\frac{\Pi}{\mathrm{2}}\right)=\frac{\mathrm{5}\Pi}{\mathrm{16}} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
$${I}−{J}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left({cos}^{\mathrm{6}} {x}−{sin}^{\mathrm{6}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} +\mathrm{3}{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} {x}\left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}^{\mathrm{3}} \mathrm{2}{x}+\mathrm{3}\left(\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}\right)\left({cos}\mathrm{2}{x}\right)\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cos}\mathrm{6}{x}+\mathrm{3}{cos}\mathrm{2}{x}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{1}−\frac{\mathrm{1}+{cos}\mathrm{4}{x}}{\mathrm{2}}\right)\left({cos}\mathrm{2}{x}\right)\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{6}{x}+\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{2}{x}+\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\mathrm{2}−\mathrm{1}−{cos}\mathrm{4}{x}}{\mathrm{2}}{cos}\mathrm{2}{x}\:{dx} \\ $$$$=\mathrm{0}+\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\left(\mathrm{1}−{cos}\mathrm{4}{x}\right){cos}\mathrm{2}{x}}{} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \left({cos}\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{6}{x}+{cos}\mathrm{2}{x}\:\:{dx} \\ $$$$=\mathrm{0} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{2}{x}\:{dx}=\mid\frac{{sin}\mathrm{2}{x}}{\mathrm{2}}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} =\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {cos}\mathrm{6}{x}=\mid\frac{{sin}\mathrm{6}{x}}{\mathrm{6}}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} =\frac{{sin}\mathrm{3}\Pi−{sin}\mathrm{0}}{\mathrm{6}}=\mathrm{0} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
$${so}\:{I}=\frac{\mathrm{5}\Pi}{\mathrm{32}}\:\:\:{J}=\frac{\mathrm{5}\Pi}{\mathrm{32}} \\ $$
Commented by prof Abdo imad last updated on 01/Aug/18
$${your}\:{answer}\:{is}\:{correct}\:{sir}\:{Tanmay}\:{thanks}. \\ $$
Answered by prof Abdo imad last updated on 01/Aug/18
$$\left.\mathrm{1}\right)\:{we}\:{use}\:{the}\:{formulae}\:{a}^{\mathrm{3}\:} +{b}^{\mathrm{3}} =\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab} \\ $$$${and}\:{a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\left({a}−{b}\right)^{\mathrm{3}} \:+\mathrm{3}{ab} \\ $$$${I}\:+{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\left({cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \:+\left({sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \right){dx} \\ $$$$\left.=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} −\mathrm{3}{cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\mathrm{3}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{3}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{1}−\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{3}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−{cos}\left(\mathrm{4}{x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{3}\pi}{\mathrm{16}}\:+\frac{\mathrm{3}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{4}{x}\right){dx} \\ $$$$=\frac{\mathrm{5}\pi}{\mathrm{16}}\:+\frac{\mathrm{3}}{\mathrm{64}}\left[{sin}\left(\mathrm{4}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{5}\pi}{\mathrm{16}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$$\:\:\:{or}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\left({a}+{b}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\left({a}−{b}\right)^{\mathrm{3}} +\mathrm{3}{ab}\left({a}−{b}\right) \\ $$$${or}\:{a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\left({a}−{b}\right)\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right) \\ $$
Commented by math khazana by abdo last updated on 01/Aug/18
$${error}\:{at}\:{the}\:{first}\:{line} \\ $$$${a}^{\mathrm{3}} \:+{b}^{\mathrm{3}} \:=\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right)\:{and} \\ $$$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} \:=\left({a}−{b}\right)^{\mathrm{3}} \:+\mathrm{3}{ab}\left({a}−{b}\right) \\ $$
Answered by prof Abdo imad last updated on 01/Aug/18
$${I}−{J}\:\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\left({cos}^{\mathrm{2}} {x}\right)^{\mathrm{3}} −\left({sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} \:+\mathrm{3}{cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{2}} {x}\left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right)\left\{\left({cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:+\mathrm{3}{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} {x}\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right)\left(\:{cos}^{\mathrm{4}} {x}\:+{sin}^{\mathrm{4}} {x}\:\:+{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}{x}\right)\left\{\:\left({cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:−{cos}^{\mathrm{2}} {xsin}^{\mathrm{2}} {x}\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right)\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right)\left(\mathrm{4}−\frac{\mathrm{1}−{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right)\left(\mathrm{7}−{cos}\left(\mathrm{4}{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{7}}{\mathrm{8}}\:\left[\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\frac{\mathrm{1}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{4}{x}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{16}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{{cos}\left(\mathrm{6}{x}\right)+{cos}\left(\mathrm{2}{x}\right)\right){dx}\:=\mathrm{0}\:\Rightarrow{I}−{J}=\mathrm{0} \\ $$