Menu Close

let-I-0-pi-2-cos-6-x-dx-and-J-0-pi-2-sin-6-xdx-1-cslculate-I-J-and-I-J-2-find-the-value-of-I-and-J-




Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18
let I = ∫_0 ^(π/2)  cos^6 x dx and  J = ∫_0 ^(π/2)  sin^6 xdx  1)cslculate I +J  and I−J  2)find the value of I and J
letI=0π2cos6xdxandJ=0π2sin6xdx1)cslculateI+JandIJ2)findthevalueofIandJ
Commented by prof Abdo imad last updated on 01/Aug/18
2) we have I +J =((5π)/(16)) and I−J =0 ⇒  I=J  and 2I =((5π)/(16)) ⇒ I =J =((5π)/(32)) .
2)wehaveI+J=5π16andIJ=0I=Jand2I=5π16I=J=5π32.
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
I+J=∫_0 ^(Π/2) (cos^6 x+sin^6 x)dx  =∫_0 ^(Π/2) (cos^2 x+sin^2 x)^3 −3cos^2 xsin^2 x(cos^2 x+sin^2 x)  dx  =∫_0 ^(Π/2) {1−3(((1+cos2x)/2))(((1−cos2x)/2))} dx  =∫_0 ^(Π/2) dx−(3/4)∫_0 ^(Π/2) (1−cos^2 2x ) dx  =∫_0 ^(Π/2) dx−(3/4)∫_0 ^(Π/2) dx+(3/4)∫_0 ^(Π/2) ((1+cos4x)/2) dx  =∫_0 ^(Π/2) dx−(3/4)∫_0 ^(Π/2) dx+(3/8)∫_0 ^(Π/2) dx+(3/8)∫_0 ^(Π/2) cos4x dx  =∣x−(3/4)x+(3/8)x∣_0 ^(Π/2) +(3/8)×∣((sin4x)/4)∣_0 ^(Π/2)   =(1−(3/4)+(3/8))((Π/2))+0  =(((8−6+3)/8))((Π/2))=((5Π)/(16))
I+J=0Π2(cos6x+sin6x)dx=0Π2(cos2x+sin2x)33cos2xsin2x(cos2x+sin2x)dx=0Π2{13(1+cos2x2)(1cos2x2)}dx=0Π2dx340Π2(1cos22x)dx=0Π2dx340Π2dx+340Π21+cos4x2dx=0Π2dx340Π2dx+380Π2dx+380Π2cos4xdx=∣x34x+38x0Π2+38×sin4x40Π2=(134+38)(Π2)+0=(86+38)(Π2)=5Π16
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
I−J=∫_0 ^(Π/2) (cos^6 x−sin^6 x)dx  =∫_0 ^(Π/2)  (cos^2 x−sin^2 x)^3 +3cos^2 xsin^2 x(cos^2 x−sin^2 x)dx  =∫_0 ^(Π/2) cos^3 2x+3(((1+cos2x)/2))(((1−cos2x)/2))(cos2x) dx  =∫_0 ^(Π/2) ((cos6x+3cos2x)/4)+(3/4)(1−((1+cos4x)/2))(cos2x) dx  =(1/4)∫_0 ^(Π/2) cos6x+(3/4)∫_0 ^(Π/2) cos2x+∫_0 ^(Π/2) ((2−1−cos4x)/2)cos2x dx  =0+0+(1/2)∫_0 ^(Π/2) (((1−cos4x)cos2x)/)  =(1/2)∫_0 ^(Π/2) (cos2x)−(1/4)∫_0 ^(Π/2) cos6x+cos2x  dx  =0    ∫_0 ^(Π/2) cos2x dx=∣((sin2x)/2)∣_0 ^(Π/2) =0  ∫_0 ^(Π/2) cos6x=∣((sin6x)/6)∣_0 ^(Π/2) =((sin3Π−sin0)/6)=0
IJ=0Π2(cos6xsin6x)dx=0Π2(cos2xsin2x)3+3cos2xsin2x(cos2xsin2x)dx=0Π2cos32x+3(1+cos2x2)(1cos2x2)(cos2x)dx=0Π2cos6x+3cos2x4+34(11+cos4x2)(cos2x)dx=140Π2cos6x+340Π2cos2x+0Π221cos4x2cos2xdx=0+0+120Π2(1cos4x)cos2x=120Π2(cos2x)140Π2cos6x+cos2xdx=00Π2cos2xdx=∣sin2x20Π2=00Π2cos6x=∣sin6x60Π2=sin3Πsin06=0
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
so I=((5Π)/(32))   J=((5Π)/(32))
soI=5Π32J=5Π32
Commented by prof Abdo imad last updated on 01/Aug/18
your answer is correct sir Tanmay thanks.
youransweriscorrectsirTanmaythanks.
Answered by prof Abdo imad last updated on 01/Aug/18
1) we use the formulae a^(3 ) +b^3 =(a+b)^3 −3ab  and a^3 −b^3 =(a−b)^3  +3ab  I +J =∫_0 ^(π/2)  ((cos^2 x)^3  +(sin^2 x)^3 )dx  =∫_0 ^(π/2) (cos^2 x+sin^2 x)^3 −3cos^2 x sin^2 x)dx  =(π/2) −3 ∫_0 ^(π/2)  ((1+cos(2x))/2)((1−cos(2x))/2)dx  =(π/2) −(3/4) ∫_0 ^(π/2) (1−cos^2 (2x))dx  =(π/2)−(3/4) ∫_0 ^(π/2)  (1−((1+cos(4x))/2))dx  =(π/2) −(3/8) ∫_0 ^(π/2) (1−cos(4x))dx  =(π/2) −((3π)/(16)) +(3/8) ∫_0 ^(π/2)  cos(4x)dx  =((5π)/(16)) +(3/(64))[sin(4x)]_0 ^(π/2)  =((5π)/(16))
1)weusetheformulaea3+b3=(a+b)33abanda3b3=(ab)3+3abI+J=0π2((cos2x)3+(sin2x)3)dx=0π2(cos2x+sin2x)33cos2xsin2x)dx=π230π21+cos(2x)21cos(2x)2dx=π2340π2(1cos2(2x))dx=π2340π2(11+cos(4x)2)dx=π2380π2(1cos(4x))dx=π23π16+380π2cos(4x)dx=5π16+364[sin(4x)]0π2=5π16
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
a^3 +b^3 =(a+b)^3 −3ab(a+b)     or a^3 +b^3 =(a+b)(a^2 −ab+b^2 )  a^3 −b^3 =(a−b)^3 +3ab(a−b)  or a^3 −b^3 =(a−b)(a^2 +ab+b^2 )
a3+b3=(a+b)33ab(a+b)ora3+b3=(a+b)(a2ab+b2)a3b3=(ab)3+3ab(ab)ora3b3=(ab)(a2+ab+b2)
Commented by math khazana by abdo last updated on 01/Aug/18
error at the first line  a^3  +b^3  =(a+b)^3 −3ab(a+b) and  a^3 −b^3  =(a−b)^3  +3ab(a−b)
erroratthefirstlinea3+b3=(a+b)33ab(a+b)anda3b3=(ab)3+3ab(ab)
Answered by prof Abdo imad last updated on 01/Aug/18
I−J  = ∫_0 ^(π/2) ((cos^2 x)^3 −(sin^2 x)^3 )dx  =∫_0 ^(π/2) (cos^2 x−sin^2 x)^3  +3cos^2 x sin^2 x(cos^2 x−sin^2 x)dx  =∫_0 ^(π/2)  (cos^2 x−sin^2 x){(cos^2 x−sin^2 x)^2  +3cos^2 xsin^2 x}dx  =∫_0 ^(π/2)  cos(2x)( cos^4 x +sin^4 x  +sin^2 x cos^2 x)dx  =∫_0 ^(π/2) cos(2x){ (cos^2 x +sin^2 x)^2  −cos^2 xsin^2 x}dx  =∫_0 ^(π/2)  cos(2x){1−(1/4)sin^2 (2x)}dx  =(1/4) ∫_0 ^(π/2)  cos(2x)(4−((1−cos(4x))/2))dx  =(1/8) ∫_0 ^(π/2)  cos(2x)(7−cos(4x))dx  =(7/8) [(1/2)sin(2x)]_0 ^(π/2)  −(1/8) ∫_0 ^(π/2)  cos(2x)cos(4x)  =−(1/(16)) ∫_0 ^(π/2) {cos(6x)+cos(2x))dx =0 ⇒I−J=0
IJ=0π2((cos2x)3(sin2x)3)dx=0π2(cos2xsin2x)3+3cos2xsin2x(cos2xsin2x)dx=0π2(cos2xsin2x){(cos2xsin2x)2+3cos2xsin2x}dx=0π2cos(2x)(cos4x+sin4x+sin2xcos2x)dx=0π2cos(2x){(cos2x+sin2x)2cos2xsin2x}dx=0π2cos(2x){114sin2(2x)}dx=140π2cos(2x)(41cos(4x)2)dx=180π2cos(2x)(7cos(4x))dx=78[12sin(2x)]0π2180π2cos(2x)cos(4x)=1160π2{cos(6x)+cos(2x))dx=0IJ=0

Leave a Reply

Your email address will not be published. Required fields are marked *