Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18

Commented by prof Abdo imad last updated on 01/Aug/18

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18

Commented by prof Abdo imad last updated on 01/Aug/18

Answered by prof Abdo imad last updated on 01/Aug/18
![1) we use the formulae a^(3 ) +b^3 =(a+b)^3 −3ab and a^3 −b^3 =(a−b)^3 +3ab I +J =∫_0 ^(π/2) ((cos^2 x)^3 +(sin^2 x)^3 )dx =∫_0 ^(π/2) (cos^2 x+sin^2 x)^3 −3cos^2 x sin^2 x)dx =(π/2) −3 ∫_0 ^(π/2) ((1+cos(2x))/2)((1−cos(2x))/2)dx =(π/2) −(3/4) ∫_0 ^(π/2) (1−cos^2 (2x))dx =(π/2)−(3/4) ∫_0 ^(π/2) (1−((1+cos(4x))/2))dx =(π/2) −(3/8) ∫_0 ^(π/2) (1−cos(4x))dx =(π/2) −((3π)/(16)) +(3/8) ∫_0 ^(π/2) cos(4x)dx =((5π)/(16)) +(3/(64))[sin(4x)]_0 ^(π/2) =((5π)/(16))](https://www.tinkutara.com/question/Q41071.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18

Commented by math khazana by abdo last updated on 01/Aug/18

Answered by prof Abdo imad last updated on 01/Aug/18
![I−J = ∫_0 ^(π/2) ((cos^2 x)^3 −(sin^2 x)^3 )dx =∫_0 ^(π/2) (cos^2 x−sin^2 x)^3 +3cos^2 x sin^2 x(cos^2 x−sin^2 x)dx =∫_0 ^(π/2) (cos^2 x−sin^2 x){(cos^2 x−sin^2 x)^2 +3cos^2 xsin^2 x}dx =∫_0 ^(π/2) cos(2x)( cos^4 x +sin^4 x +sin^2 x cos^2 x)dx =∫_0 ^(π/2) cos(2x){ (cos^2 x +sin^2 x)^2 −cos^2 xsin^2 x}dx =∫_0 ^(π/2) cos(2x){1−(1/4)sin^2 (2x)}dx =(1/4) ∫_0 ^(π/2) cos(2x)(4−((1−cos(4x))/2))dx =(1/8) ∫_0 ^(π/2) cos(2x)(7−cos(4x))dx =(7/8) [(1/2)sin(2x)]_0 ^(π/2) −(1/8) ∫_0 ^(π/2) cos(2x)cos(4x) =−(1/(16)) ∫_0 ^(π/2) {cos(6x)+cos(2x))dx =0 ⇒I−J=0](https://www.tinkutara.com/question/Q41072.png)