Menu Close

let-I-0-pi-2-cosx-1-cosx-sinx-dx-and-J-0-pi-2-sinx-1-cosx-sinx-dx-prove-that-I-J-then-calculate-I-and-J-




Question Number 36942 by maxmathsup by imad last updated on 07/Jun/18
let I = ∫_0 ^(π/2)    ((cosx)/( (√(1+cosx sinx))))dx and J =∫_0 ^(π/2)   ((sinx)/( (√(1+cosx sinx))))dx  prove that I=J  then calculate I and J .
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\:\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinx}}{\:\sqrt{\mathrm{1}+{cosx}\:{sinx}}}{dx} \\ $$$${prove}\:{that}\:{I}={J}\:\:{then}\:{calculate}\:{I}\:{and}\:{J}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18
I=∫_0 ^(Π/2) ((cosx)/( (√(1+cosxsinx))))dx  =∫_0 ^(Π/2) ((cos((Π/2)−x))/( (√(1+cos((Π/2)−x)sin((Π/2)−x)))))dx  =∫_0 ^(Π/2)  ((sinx)/( (√(1+sinxcosx))))dx  =J (provd)  I+J=∫_0 ^(Π/2) ((cosx+sinx)/( (√(1+sinxcosx))))dx  =(√2) ∫_0 ^(Π/2)  ((cosx+sinx)/( (√(1+1+2sinxcosx))))dx  =(√2) ∫_0 ^(Π/2) ((d(sinx−cosx))/( (√(1−(−1−2sinxcosx)))))  =(√2) ∫_0 ^(Π/2)  ((d(sinx−cosx))/( (√(1−(−2+1−2sinxcosx)))))  (√)2 ∫_0 ^(Π/2) ((d(sinx−cosx))/( (√(3−(sinx−cosx)^2 ))))    [∫(dx/( (√(a^2 −x^2 ))))=sin^(−1) ((x/a))  =(√2) ×∣sin^(−1) (((sinx−cosx)/( (√3))))∣_0 ^(Π/2)   =(√2) ×{sin^(−1) ((1/( (√3))))−sin^(−1) (((−1)/( (√3))))}  =2(√2) sin^(−1) ((1/( (√3))))  I+j=2I=2(√2) sin^(−1) ((1/( (√3) )))  I=J=(√2) sin^(−1) ((1/( (√3))))
$${I}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cosx}}{\:\sqrt{\mathrm{1}+{cosxsinx}}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cos}\left(\frac{\Pi}{\mathrm{2}}−{x}\right)}{\:\sqrt{\mathrm{1}+{cos}\left(\frac{\Pi}{\mathrm{2}}−{x}\right){sin}\left(\frac{\Pi}{\mathrm{2}}−{x}\right)}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\frac{{sinx}}{\:\sqrt{\mathrm{1}+{sinxcosx}}}{dx} \\ $$$$={J}\:\left({provd}\right) \\ $$$${I}+{J}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cosx}+{sinx}}{\:\sqrt{\mathrm{1}+{sinxcosx}}}{dx} \\ $$$$=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\frac{{cosx}+{sinx}}{\:\sqrt{\mathrm{1}+\mathrm{1}+\mathrm{2}{sinxcosx}}}{dx} \\ $$$$=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{d}\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{1}−\left(−\mathrm{1}−\mathrm{2}{sinxcosx}\right)}} \\ $$$$=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \:\frac{{d}\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{1}−\left(−\mathrm{2}+\mathrm{1}−\mathrm{2}{sinxcosx}\right)}} \\ $$$$\sqrt{}\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{d}\left({sinx}−{cosx}\right)}{\:\sqrt{\mathrm{3}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }}\:\:\:\:\left[\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}={sin}^{−\mathrm{1}} \left(\frac{{x}}{{a}}\right)\right. \\ $$$$=\sqrt{\mathrm{2}}\:×\mid{sin}^{−\mathrm{1}} \left(\frac{{sinx}−{cosx}}{\:\sqrt{\mathrm{3}}}\right)\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}}\:×\left\{{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)−{sin}^{−\mathrm{1}} \left(\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\:{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${I}+{j}=\mathrm{2}{I}=\mathrm{2}\sqrt{\mathrm{2}}\:{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:}\right) \\ $$$${I}={J}=\sqrt{\mathrm{2}}\:{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *