Menu Close

let-I-0-pi-2-cosx-1-cosx-sinx-dx-and-J-0-pi-2-sinx-1-cosx-sinx-dx-prove-that-I-J-then-calculate-I-and-J-




Question Number 36942 by maxmathsup by imad last updated on 07/Jun/18
let I = ∫_0 ^(π/2)    ((cosx)/( (√(1+cosx sinx))))dx and J =∫_0 ^(π/2)   ((sinx)/( (√(1+cosx sinx))))dx  prove that I=J  then calculate I and J .
letI=0π2cosx1+cosxsinxdxandJ=0π2sinx1+cosxsinxdxprovethatI=JthencalculateIandJ.
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18
I=∫_0 ^(Π/2) ((cosx)/( (√(1+cosxsinx))))dx  =∫_0 ^(Π/2) ((cos((Π/2)−x))/( (√(1+cos((Π/2)−x)sin((Π/2)−x)))))dx  =∫_0 ^(Π/2)  ((sinx)/( (√(1+sinxcosx))))dx  =J (provd)  I+J=∫_0 ^(Π/2) ((cosx+sinx)/( (√(1+sinxcosx))))dx  =(√2) ∫_0 ^(Π/2)  ((cosx+sinx)/( (√(1+1+2sinxcosx))))dx  =(√2) ∫_0 ^(Π/2) ((d(sinx−cosx))/( (√(1−(−1−2sinxcosx)))))  =(√2) ∫_0 ^(Π/2)  ((d(sinx−cosx))/( (√(1−(−2+1−2sinxcosx)))))  (√)2 ∫_0 ^(Π/2) ((d(sinx−cosx))/( (√(3−(sinx−cosx)^2 ))))    [∫(dx/( (√(a^2 −x^2 ))))=sin^(−1) ((x/a))  =(√2) ×∣sin^(−1) (((sinx−cosx)/( (√3))))∣_0 ^(Π/2)   =(√2) ×{sin^(−1) ((1/( (√3))))−sin^(−1) (((−1)/( (√3))))}  =2(√2) sin^(−1) ((1/( (√3))))  I+j=2I=2(√2) sin^(−1) ((1/( (√3) )))  I=J=(√2) sin^(−1) ((1/( (√3))))
I=0Π2cosx1+cosxsinxdx=0Π2cos(Π2x)1+cos(Π2x)sin(Π2x)dx=0Π2sinx1+sinxcosxdx=J(provd)I+J=0Π2cosx+sinx1+sinxcosxdx=20Π2cosx+sinx1+1+2sinxcosxdx=20Π2d(sinxcosx)1(12sinxcosx)=20Π2d(sinxcosx)1(2+12sinxcosx)20Π2d(sinxcosx)3(sinxcosx)2[dxa2x2=sin1(xa)=2×sin1(sinxcosx3)0Π2=2×{sin1(13)sin1(13)}=22sin1(13)I+j=2I=22sin1(13)I=J=2sin1(13)

Leave a Reply

Your email address will not be published. Required fields are marked *