Menu Close

let-I-0-pi-8-e-2t-cos-4-t-and-J-0-pi-8-e-2t-sin-4-dt-find-the-values-of-I-andJ-




Question Number 42799 by maxmathsup by imad last updated on 02/Sep/18
let I = ∫_0 ^(π/8)   e^(−2t)  cos^4 t    and J  =∫_0 ^(π/8)  e^(−2t)  sin^4 dt  find the values of I andJ .
letI=0π8e2tcos4tandJ=0π8e2tsin4dtfindthevaluesofIandJ.
Commented by maxmathsup by imad last updated on 06/Sep/18
we have  I +J = ∫_0 ^(π/8)  e^(−2t) { cos^4 t +sin^4 t}dt  = ∫_0 ^(π/8)  e^(−2t) { (cos^2 t +sin^2 t)^2  −2cos^2 t sin^2 t}dt  =∫_0 ^(π/8)   e^(−2t) {  1−(1/2) sin^2 2t} dt = ∫_0 ^(π/8)  e^(−2t) dt −(1/2) ∫_0 ^(π/8)  e^(−2t)   sin^2 (2t) dt  =−(1/2)[ e^(−2t) ]_0 ^(π/8)    −(1/4) ∫_0 ^(π/8)  e^(−2t)  (1−cos(2t))dt  =(1/2){1−e^(−(π/4)) }  +(1/8)[ e^(−2t) ]_0 ^(π/8)   +(1/4) ∫_0 ^(π/8)  e^(−2t)  cos(2t)dt  =(1/2){1−e^(−(π/4)) } +(1/8){ e^(−(π/4))  −1} +(1/4) Re( ∫_0 ^(π/8)   e^(−2t +2it) dt) but  ∫_0 ^(π/8)   e^((−2+2i)t) dt =[ (1/(−2+2i)) e^((−2+2i)t) ]_0 ^(π/8)   =(1/(−2 +2i)) { e^((−2+2i)(π/8))  −1}  = −(1/2)  (1/(1−i)){ e^(−(π/4))  e^(i(π/4))  −1}} =−(1/2) (((1+i))/2)){ e^(−(π/4)) ( (1/( (√2))) +(i/( (√2)))) −1}  =((−1)/4)(1+i) { (e^(−(π/4)) /( (√2))) + i (e^(−(π/4)) /( (√2))) −1}  =−(1/(4(√2))){ e^(−(π/4))  +i e^(−(π/4))  −(√2)}(1+i)  =−(1/(4(√2))){  e^(−(π/4))  +i e^(−(π/4))   +i e^(−(π/4))  −e^(−(π/4))  −(√2)−(√2)i}  = −(1/(4(√2))){ 2i e^(−(π/4))  −(√2)i −(√2)} ⇒Re( ∫_0 ^(π/2)  ...dx)= (1/4) ⇒   I +J =(1/2) −(1/8) −(3/8) e^(−(π/4))   +(1/(16)) = (7/(16)) −(3/8) e^(−(π/4))  .... be continued...
wehaveI+J=0π8e2t{cos4t+sin4t}dt=0π8e2t{(cos2t+sin2t)22cos2tsin2t}dt=0π8e2t{112sin22t}dt=0π8e2tdt120π8e2tsin2(2t)dt=12[e2t]0π8140π8e2t(1cos(2t))dt=12{1eπ4}+18[e2t]0π8+140π8e2tcos(2t)dt=12{1eπ4}+18{eπ41}+14Re(0π8e2t+2itdt)but0π8e(2+2i)tdt=[12+2ie(2+2i)t]0π8=12+2i{e(2+2i)π81}=1211i{eπ4eiπ41}}=12(1+i)2){eπ4(12+i2)1}=14(1+i){eπ42+ieπ421}=142{eπ4+ieπ42}(1+i)=142{eπ4+ieπ4+ieπ4eπ422i}=142{2ieπ42i2}Re(0π2dx)=14I+J=121838eπ4+116=71638eπ4.becontinued
Commented by maxmathsup by imad last updated on 06/Sep/18
we have I −J = ∫_0 ^(π/8)  e^(−2t) {cos^4 t −sin^4 t}dt  =∫_0 ^(π/8)  e^(−2t) {cos^2 t −sin^2 t}dt = ∫_0 ^(π/8)  e^(−2t)  cos(2t)dt =Re( ∫_0 ^(π/8)   e^(−2t +2it) dt)  =Re( ∫_0 ^(π/8)   e^((−2+2i)t) dt)=(1/4)  so  I+J =(7/(16)) −(3/8)e^(−(π/4))   and I−J=(1/4) ⇒  2I =((11)/(16)) −(3/8) e^(−(π/4))    and 2J =(3/(16)) −(3/8) e^(−(π/4))  ⇒  I =((11)/(32)) −(3/(16)) e^(−(π/4))   and J =(3/(32)) −(3/(16)) e^(−(π/4))
wehaveIJ=0π8e2t{cos4tsin4t}dt=0π8e2t{cos2tsin2t}dt=0π8e2tcos(2t)dt=Re(0π8e2t+2itdt)=Re(0π8e(2+2i)tdt)=14soI+J=71638eπ4andIJ=142I=111638eπ4and2J=31638eπ4I=1132316eπ4andJ=332316eπ4

Leave a Reply

Your email address will not be published. Required fields are marked *