let-I-0-pi-8-e-2t-cos-4-t-and-J-0-pi-8-e-2t-sin-4-dt-find-the-values-of-I-andJ- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42799 by maxmathsup by imad last updated on 02/Sep/18 letI=∫0π8e−2tcos4tandJ=∫0π8e−2tsin4dtfindthevaluesofIandJ. Commented by maxmathsup by imad last updated on 06/Sep/18 wehaveI+J=∫0π8e−2t{cos4t+sin4t}dt=∫0π8e−2t{(cos2t+sin2t)2−2cos2tsin2t}dt=∫0π8e−2t{1−12sin22t}dt=∫0π8e−2tdt−12∫0π8e−2tsin2(2t)dt=−12[e−2t]0π8−14∫0π8e−2t(1−cos(2t))dt=12{1−e−π4}+18[e−2t]0π8+14∫0π8e−2tcos(2t)dt=12{1−e−π4}+18{e−π4−1}+14Re(∫0π8e−2t+2itdt)but∫0π8e(−2+2i)tdt=[1−2+2ie(−2+2i)t]0π8=1−2+2i{e(−2+2i)π8−1}=−1211−i{e−π4eiπ4−1}}=−12(1+i)2){e−π4(12+i2)−1}=−14(1+i){e−π42+ie−π42−1}=−142{e−π4+ie−π4−2}(1+i)=−142{e−π4+ie−π4+ie−π4−e−π4−2−2i}=−142{2ie−π4−2i−2}⇒Re(∫0π2…dx)=14⇒I+J=12−18−38e−π4+116=716−38e−π4….becontinued… Commented by maxmathsup by imad last updated on 06/Sep/18 wehaveI−J=∫0π8e−2t{cos4t−sin4t}dt=∫0π8e−2t{cos2t−sin2t}dt=∫0π8e−2tcos(2t)dt=Re(∫0π8e−2t+2itdt)=Re(∫0π8e(−2+2i)tdt)=14soI+J=716−38e−π4andI−J=14⇒2I=1116−38e−π4and2J=316−38e−π4⇒I=1132−316e−π4andJ=332−316e−π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-x-3-y-4-2-y-3-x-6-prove-that-xy-z-z-1-6-z-2-Next Next post: JS-If-a-random-variable-X-follows-normal-distribution-with-mean-30-and-variance-25-What-is-the-probalility-of-X-is-less-than-28- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.