let-I-1-dt-1-t-2-find-lim-0-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36181 by prof Abdo imad last updated on 30/May/18 letI(ξ)=∫ξ1−ξdt1−(t−ξ)2findlimξ→0+I(ξ) Commented by maxmathsup by imad last updated on 20/Aug/18 changementt−ξ=sinαgiveα=arcsin(t−ξ)⇒I(ξ)=∫0arcsin(1−2ξ)cosαdα1−sin2α=∫0arcsin(1−2ξ)dαcosα=tan(α2)=u∫0tan(arcsin(1−2ξ)2)11−u21+u22du1+u2=∫0tan(arcsin(1−2ξ)2)2du1−u2=∫0tan(arcsin(1−2ξ)2)(11+u+11−u)du=[ln∣1+u1−u∣]0tan(arcsin(1−2ξ)2)=ln∣1+tan(arcsin(1−2ξ)2)1−tan(arcsin(1−2ξ)2)∣⇒limξ→0+I(ξ)=ln∣1+tan(π4)1−tan(π4)∣=+∞. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-y-xy-x-y-1-find-D-f-2-calcule-x-f-x-x-y-y-f-y-x-y-interms-of-f-x-y-Next Next post: Question-167252 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.