Menu Close

let-I-1-dt-1-t-2-find-lim-0-I-




Question Number 36181 by prof Abdo imad last updated on 30/May/18
let I(ξ)  = ∫_ξ ^(1−ξ)    (dt/(1−(t−ξ)^2 ))  find lim_(ξ→0^+ )    I(ξ)
letI(ξ)=ξ1ξdt1(tξ)2findlimξ0+I(ξ)
Commented by maxmathsup by imad last updated on 20/Aug/18
changement  t−ξ =sinα give  α =arcsin(t−ξ) ⇒  I(ξ) = ∫_0 ^(arcsin(1−2ξ))     ((cosα dα)/(1−sin^2 α)) =∫_0 ^(arcsin(1−2ξ))   (dα/(cosα))  =_(tan((α/2))=u)       ∫_0 ^(tan(((arcsin(1−2ξ))/2)))     (1/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 )) = ∫_0 ^(tan(((arcsin(1−2ξ))/2)))  ((2du)/(1−u^2 ))  = ∫_0 ^(tan(((arcsin(1−2ξ))/2))) ((1/(1+u)) +(1/(1−u)))du =[ln∣((1+u)/(1−u))∣]_0 ^(tan(((arcsin(1−2ξ))/2)))   =ln∣ ((1+tan(((arcsin(1−2ξ))/2)))/(1−tan(((arcsin(1−2ξ))/2))))∣ ⇒lim_(ξ→0^+ )    I(ξ)  =ln∣ ((1 +tan((π/4)))/(1−tan((π/4))))∣  =+∞ .
changementtξ=sinαgiveα=arcsin(tξ)I(ξ)=0arcsin(12ξ)cosαdα1sin2α=0arcsin(12ξ)dαcosα=tan(α2)=u0tan(arcsin(12ξ)2)11u21+u22du1+u2=0tan(arcsin(12ξ)2)2du1u2=0tan(arcsin(12ξ)2)(11+u+11u)du=[ln1+u1u]0tan(arcsin(12ξ)2)=ln1+tan(arcsin(12ξ)2)1tan(arcsin(12ξ)2)limξ0+I(ξ)=ln1+tan(π4)1tan(π4)=+.

Leave a Reply

Your email address will not be published. Required fields are marked *