Menu Close

Let-I-1-pi-6-pi-3-sin-x-x-dx-I-2-pi-6-pi-3-sin-sin-x-sin-x-dx-I-3-pi-6-pi-3-sin-tan-x-tan-x-dx-Prove-that-I-2-gt-I-1-gt-I-3-




Question Number 40787 by rahul 19 last updated on 27/Jul/18
Let I_1 = ∫_(π/6) ^(π/3) ((sin x)/x) dx  ,  I_2 = ∫_(π/6) ^(π/3) ((sin (sin x))/(sin x))dx  , I_3 = ∫_(π/6) ^(π/3) ((sin (tan x))/(tan x))dx.   Prove that I_2  > I_1  > I_3  .
LetI1=π6π3sinxxdx,I2=π6π3sin(sinx)sinxdx,I3=π6π3sin(tanx)tanxdx.ProvethatI2>I1>I3.
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jul/18
f(x)=((sinx)/x)   g(x)=((sin(sinx))/(sinx))   h(x)=((sin(tanx))/(tanx))  to prove I_2 >I_1 >I_3   we have to prove   g(x)>f(x)>h(x)   when   (Π/3)>x>(Π/6)  takining the help of graph i am trying to  establish...later by mathematically
f(x)=sinxxg(x)=sin(sinx)sinxh(x)=sin(tanx)tanxtoproveI2>I1>I3wehavetoproveg(x)>f(x)>h(x)whenΠ3>x>Π6takiningthehelpofgraphiamtryingtoestablishlaterbymathematically
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
 i am attaching some thing refreshing...
iamattachingsomethingrefreshing
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
Answered by MJS last updated on 27/Jul/18
the integrals represent the areas between  the functions and the x−axis.  so all we have to show is  u((sin sin x)/(sin x))≥((sin x)/x)≤((sin tan x)/(tan x)) ∀x∈[(π/6); (π/3)]  for x=(π/6) we get  2sin (1/2)≥(3/π)≥(√3)sin ((√3)/3)  .958...≥.954...≥.945...  for x=(π/3) we get  ((2(√3))/3)sin ((√3)/2)≥((3(√3))/(2π))≥((√3)/3)sin (√3)  .87...≥.82...≥.56...    we have to show that the functions are  falling within the given interval (they don′t  have any “jumps” or “holes”)  x∈[(π/6); (π/3)] ⇒       ⇒ sin x ∈[(1/2); ((√3)/2)] ⇒ sin sin x  is increasing       ⇒ tan x ∈[((√3)/3); (√3)] ⇒ sin tan x  is increasing  both without any salience  the denominators x, sin x and tan x have no  zeros in the given intervall  ⇒ try to find the amount of increasement  in the interval  (∫f′(x)dx=f(x))  [((sin sin x)/(sin x))]_(π/6) ^(π/3) ≈−.079  [((sin x)/x)]_(π/6) ^(π/3) ≈−.128  [((sin tan x)/(tan x))]_(π/6) ^(π/3) ≈−.376  so those who start at a lower value loose  more along the way ⇒ this should be proven    or simply plot them ;−)
theintegralsrepresenttheareasbetweenthefunctionsandthexaxis.soallwehavetoshowisusinsinxsinxsinxxsintanxtanxx[π6;π3]forx=π6weget2sin123π3sin33.958.954.945forx=π3weget233sin32332π33sin3.87.82.56wehavetoshowthatthefunctionsarefallingwithinthegiveninterval(theydonthaveanyjumpsorholes)x[π6;π3]sinx[12;32]sinsinxisincreasingtanx[33;3]sintanxisincreasingbothwithoutanysaliencethedenominatorsx,sinxandtanxhavenozerosinthegivenintervalltrytofindtheamountofincreasementintheinterval(f(x)dx=f(x))[sinsinxsinx]π6π3.079[sinxx]π6π3.128[sintanxtanx]π6π3.376sothosewhostartatalowervalueloosemorealongthewaythisshouldbeprovenorsimplyplotthem;)

Leave a Reply

Your email address will not be published. Required fields are marked *