Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18
$${let}\:{I}\:\left(\lambda\right)\:=\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:\:{extract}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\left(\lambda\right) \\ $$$$\left.\mathrm{3}\right)\:{conclude}\:\:{the}\:{values}\:{of}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right). \\ $$
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{I}\left(\lambda\right)\:=\:\int_{−\infty} ^{+\infty} \frac{{cos}\left(\lambda{x}\right)\left(\mathrm{1}−{ix}\right)^{\mathrm{2}} }{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} \left(\mathrm{1}−{ix}\right)^{\mathrm{2}} }\: \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\lambda{x}\right)\left(\mathrm{1}−{ix}\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\lambda{x}\right)\left(\mathrm{1}−\mathrm{2}{ix}\:−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){cos}\left(\lambda{x}\right)\:−\mathrm{2}{i}\:{x}\:{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:−{i}\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}\:{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\Rightarrow \\ $$$${Re}\left(\:{I}\left(\lambda\right)\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{and} \\ $$$${Im}\left(\:{I}\left(\lambda\right)\right)\:=−\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}\:{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{I}\left(\lambda\right)\:=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\lambda{x}} }{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} }{dx}\right)\:{let} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\lambda{z}} }{\left(\mathrm{1}+{iz}\right)^{\mathrm{2}} }\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\:\:\frac{{e}^{{i}\lambda{z}} }{\left({iz}−{i}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\frac{{e}^{{i}\lambda{z}} }{\left(−\mathrm{1}\right)\left({z}−{i}\right)^{\mathrm{2}} }\:=−\frac{{e}^{{i}\lambda{z}} }{\left({z}−{i}\right)^{\mathrm{2}} } \\ $$$${so}\:{is}\:{a}\:{double}\:{pole}\:{for}\:\varphi \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\: \\ $$$${Res}\left(\varphi,{i}\right)\:=\:{lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\:\left\{\:\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\left\{−{e}^{{i}\lambda{z}} \right\}^{\left(\mathrm{1}\right)} ={lim}_{{z}\rightarrow{i}} \:−{i}\lambda\:{e}^{{i}\lambda{z}} \\ $$$$=−{i}\lambda\:{e}^{−\lambda} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(−{i}\:\lambda\:{e}^{−\lambda} \right)\:=\:\mathrm{2}\pi\:\lambda\:{e}^{−\lambda} \:\:\Rightarrow \\ $$$${I}\left({I}\left(\lambda\right)\right)\:=\mathrm{2}\pi\:\lambda\:{e}^{−\lambda} \\ $$$$\left.\mathrm{3}\right)\:{Re}\left({I}\left(\lambda\right)\right)\:=\:\int_{−\infty} ^{+\infty} \:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=\:\mathrm{2}\pi\lambda\:{e}^{−\lambda} \\ $$$${and}\:\:{Im}\left({I}\left(\lambda\right)\right)=\mathrm{0} \\ $$