Menu Close

let-I-cos-x-1-ix-2-dx-1-extract-Re-I-and-Im-I-2-calculate-I-3-conclude-the-values-of-Re-I-and-Im-I-




Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18
let I (λ) =  ∫_(−∞) ^(+∞)    ((cos(λx))/((1+ix)^2 ))dx  1)  extract Re(I(λ)) and Im(I(λ))  2) calculate I(λ)  3) conclude  the values of Re(I(λ)) and Im(I(λ)).
letI(λ)=+cos(λx)(1+ix)2dx1)extractRe(I(λ))andIm(I(λ))2)calculateI(λ)3)concludethevaluesofRe(I(λ))andIm(I(λ)).
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
1) we have  I(λ) = ∫_(−∞) ^(+∞) ((cos(λx)(1−ix)^2 )/((1+ix)^2 (1−ix)^2 ))   = ∫_(−∞) ^(+∞)   ((cos(λx)(1−ix)^2 )/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)  ((cos(λx)(1−2ix −x^2 ))/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx) −2i x cos(λx))/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx))/((1+x^2 )^2 ))dx −i ∫_(−∞) ^(+∞)   ((x cos(λx))/((1+x^2 )^2 ))dx⇒  Re( I(λ)) = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx))/((1+x^2 )^2 )) dx and  Im( I(λ)) =−∫_(−∞) ^(+∞)    ((x cos(λx))/((1+x^2 )^2 ))dx =0  2) I(λ) = Re( ∫_(−∞) ^(+∞)   (e^(iλx) /((1+ix)^2 ))dx) let  ϕ(z) = (e^(iλz) /((1+iz)^2 ))  poles of ϕ?  ϕ(z) =  (e^(iλz) /((iz−i^2 )^2 )) = (e^(iλz) /((−1)(z−i)^2 )) =−(e^(iλz) /((z−i)^2 ))  so is a double pole for ϕ  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)   Res(ϕ,i) = lim_(z→i)   (1/((2−1)!)) { (z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   {−e^(iλz) }^((1)) =lim_(z→i)  −iλ e^(iλz)   =−iλ e^(−λ)  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ(−i λ e^(−λ) ) = 2π λ e^(−λ)   ⇒  I(I(λ)) =2π λ e^(−λ)   3) Re(I(λ)) = ∫_(−∞) ^(+∞)  (((1−x^2 )cos(λx))/((1+x^2 )^2 ))dx= 2πλ e^(−λ)   and  Im(I(λ))=0
1)wehaveI(λ)=+cos(λx)(1ix)2(1+ix)2(1ix)2=+cos(λx)(1ix)2(1+x2)2dx=+cos(λx)(12ixx2)(1+x2)2dx=+(1x2)cos(λx)2ixcos(λx)(1+x2)2dx=+(1x2)cos(λx)(1+x2)2dxi+xcos(λx)(1+x2)2dxRe(I(λ))=+(1x2)cos(λx)(1+x2)2dxandIm(I(λ))=+xcos(λx)(1+x2)2dx=02)I(λ)=Re(+eiλx(1+ix)2dx)letφ(z)=eiλz(1+iz)2polesofφ?φ(z)=eiλz(izi2)2=eiλz(1)(zi)2=eiλz(zi)2soisadoublepoleforφ+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eiλz}(1)=limziiλeiλz=iλeλ+φ(z)dz=2iπ(iλeλ)=2πλeλI(I(λ))=2πλeλ3)Re(I(λ))=+(1x2)cos(λx)(1+x2)2dx=2πλeλandIm(I(λ))=0

Leave a Reply

Your email address will not be published. Required fields are marked *