let-I-cos-x-1-ix-2-dx-1-extract-Re-I-and-Im-I-2-calculate-I-3-conclude-the-values-of-Re-I-and-Im-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18 letI(λ)=∫−∞+∞cos(λx)(1+ix)2dx1)extractRe(I(λ))andIm(I(λ))2)calculateI(λ)3)concludethevaluesofRe(I(λ))andIm(I(λ)). Commented by abdo mathsup 649 cc last updated on 08/Jul/18 1)wehaveI(λ)=∫−∞+∞cos(λx)(1−ix)2(1+ix)2(1−ix)2=∫−∞+∞cos(λx)(1−ix)2(1+x2)2dx=∫−∞+∞cos(λx)(1−2ix−x2)(1+x2)2dx=∫−∞+∞(1−x2)cos(λx)−2ixcos(λx)(1+x2)2dx=∫−∞+∞(1−x2)cos(λx)(1+x2)2dx−i∫−∞+∞xcos(λx)(1+x2)2dx⇒Re(I(λ))=∫−∞+∞(1−x2)cos(λx)(1+x2)2dxandIm(I(λ))=−∫−∞+∞xcos(λx)(1+x2)2dx=02)I(λ)=Re(∫−∞+∞eiλx(1+ix)2dx)letφ(z)=eiλz(1+iz)2polesofφ?φ(z)=eiλz(iz−i2)2=eiλz(−1)(z−i)2=−eiλz(z−i)2soisadoublepoleforφ∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{−eiλz}(1)=limz→i−iλeiλz=−iλe−λ⇒∫−∞+∞φ(z)dz=2iπ(−iλe−λ)=2πλe−λ⇒I(I(λ))=2πλe−λ3)Re(I(λ))=∫−∞+∞(1−x2)cos(λx)(1+x2)2dx=2πλe−λandIm(I(λ))=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-body-of-weight-6-newtons-is-plased-on-a-rough-horizontal-plane-whose-coefficient-of-friction-is-3-3-the-friction-force-Next Next post: find-the-values-of-integrals-A-cos-x-2-x-1-dx-and-B-sin-x-2-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.