Question Number 48718 by Abdo msup. last updated on 27/Nov/18
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \:{by}\:{recurrence} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}{C}_{{n}} ^{{k}} \\ $$
Commented by Abdo msup. last updated on 27/Nov/18
$${we}\:{have}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dt} \\ $$$${but}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dt}\:=\:{I}_{{n}−\mathrm{1}} \\ $$$${by}\:{parts}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}\left(−\mathrm{2}{t}\right)\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dt}\:\:\:\:{u}\:={t}\:{and}\:{v}^{'} =\left(−\mathrm{2}{t}\right)\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left[\:\frac{\mathrm{1}}{{n}}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {t}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\:{I}_{{n}} \:\Rightarrow{I}_{{n}} =\:{I}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}}\:{I}_{{n}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right){I}_{{n}} ={I}_{{n}−\mathrm{1}} \:\Rightarrow\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}}\:{I}_{{n}} ={I}_{{n}−\mathrm{1}} \:\Rightarrow{I}_{{n}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}\:{I}_{{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{I}_{{k}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{I}_{{k}−\mathrm{1}} \:\Rightarrow \\ $$$${I}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}\:{I}_{{o}} \:\:\:\:\:{but}\:{I}_{\mathrm{0}} =\mathrm{1}\:\Rightarrow{I}_{{n}} =\frac{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{2}{k}\right)}{\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}^{{n}} {n}!}{\mathrm{3}.\mathrm{5}.\mathrm{7}…..\left(\mathrm{2}{n}+\mathrm{1}\right)}\:=\frac{\mathrm{2}^{{n}} {n}!}{\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}…\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}\:×\mathrm{2}^{{n}} {n}! \\ $$$$=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 27/Nov/18
$$\left.\mathrm{2}\right){we}\:{have}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−{t}^{\mathrm{2}} \right)^{{k}} \:{dt}\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{k}} \:{dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} \:\:\Rightarrow\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} \:\:\:=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt} \\ $$$${t}={sin}\theta\:\:{dt}={cos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{n}} \theta×{cos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} ×\left({cos}\theta\right)^{\mathrm{2}{n}+\mathrm{2}−\mathrm{1}} {d}\theta \\ $$$${using}\:{gamma}\:{beta}\:{function} \\ $$$$=\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\mathrm{2}{n}+\mathrm{2}\right)}{\mathrm{2}\lceil\left(\mathrm{2}{n}+\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$=\frac{\sqrt{\pi}\:×\lceil\left(\mathrm{2}{n}+\mathrm{2}\right)}{\mathrm{2}\lceil\left(\mathrm{2}{n}+\frac{\mathrm{5}}{\mathrm{2}}\right)} \\ $$$${formula}\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \theta{cos}^{\mathrm{2}{q}−\mathrm{1}} \theta{d}\theta \\ $$$$=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\lceil\left({p}+{q}\right)} \\ $$