let-I-n-0-1-1-t-2-n-dt-1-calculate-I-n-by-recurrence-2-find-the-value-of-k-0-n-1-k-2k-1-C-n-k- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48718 by Abdo msup. last updated on 27/Nov/18 letIn=∫01(1−t2)ndt1)calculateInbyrecurrence2)findthevalueof∑k=0n(−1)k2k+1Cnk Commented by Abdo msup. last updated on 27/Nov/18 wehaveIn=∫01(1−t2)n−1(1−t2)dt=∫01(1−t2)n−1−∫01t2(1−t2)n−1dtbut∫01(1−t2)n−1dt=In−1byparts∫01t2(1−t2)n−1dt=−12∫01t(−2t)(1−t2)n−1dtu=tandv′=(−2t)(1−t2)n−1=−12{[1n(1−t2)nt]01−∫011n(1−t2)ndt}=12nIn⇒In=In−1−12nIn⇒(1+12n)In=In−1⇒2n+12nIn=In−1⇒In=2n2n+1In−1⇒∏k=1nIk=∏k=1n2k2k+1∏k=1nIk−1⇒In=∏k=1n2k2k+1IobutI0=1⇒In=∏k=1n(2k)∏k=1n(2k+1)=2nn!3.5.7…..(2n+1)=2nn!2.3.4.5…(2n)(2n+1)×2nn!=22n(n!)2(2n+1)! Commented by Abdo msup. last updated on 27/Nov/18 2)wehaveIn=∫01(1−t2)ndt=∫01∑k=0nCnk(−t2)kdt=∑k=0n(−1)kCnk∫01t2kdt=∑k=0n(−1)k2k+1Cnk⇒∑k=0n(−1)k2k+1Cnk=22n(n!)2(2n+1)!. Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18 ∫01(1−t2)ndtt=sinθdt=cosθdθ∫0π2cos2nθ×cosθdθ∫0π2(sinθ)2×12−1×(cosθ)2n+2−1dθusinggammabetafunction=⌈(12)×⌈(2n+2)2⌈(2n+2+12)=π×⌈(2n+2)2⌈(2n+52)formula2∫0π2sin2p−1θcos2q−1θdθ=⌈(p)⌈(q)⌈(p+q) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: For-a-cubic-function-in-the-form-f-x-ax-3-bx-2-cx-d-What-must-be-true-of-a-b-c-and-d-in-order-for-the-function-to-be-able-to-be-converted-to-the-form-f-x-a-x-h-3-k-Next Next post: find-x-2-x-2-4x-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.