Menu Close

let-I-n-0-1-1-t-2-n-dt-1-calculate-I-n-by-recurrence-2-find-the-value-of-k-0-n-1-k-2k-1-C-n-k-




Question Number 48718 by Abdo msup. last updated on 27/Nov/18
let I_n =∫_0 ^1 (1−t^2 )^n dt  1) calculate I_n  by recurrence  2)find the value of Σ_(k=0) ^n  (((−1)^k )/(2k+1))C_n ^k
letIn=01(1t2)ndt1)calculateInbyrecurrence2)findthevalueofk=0n(1)k2k+1Cnk
Commented by Abdo msup. last updated on 27/Nov/18
we have I_n =∫_0 ^1 (1−t^2 )^(n−1) (1−t^2 )dt  =∫_0 ^1 (1−t^2 )^(n−1)  −∫_0 ^1 t^2 (1−t^2 )^(n−1) dt  but ∫_0 ^1 (1−t^2 )^(n−1) dt = I_(n−1)   by parts  ∫_0 ^1  t^2 (1−t^2 )^(n−1) dt  =−(1/2) ∫_0 ^1  t(−2t)(1−t^2 )^(n−1) dt    u =t and v^′ =(−2t)(1−t^2 )^(n−1)   =−(1/2){ [ (1/n)(1−t^2 )^n t]_0 ^1 −∫_0 ^1  (1/n)(1−t^2 )^n dt}  =(1/(2n)) I_n  ⇒I_n = I_(n−1) −(1/(2n)) I_n  ⇒  (1+(1/(2n)))I_n =I_(n−1)  ⇒((2n+1)/(2n)) I_n =I_(n−1)  ⇒I_n =((2n)/(2n+1)) I_(n−1)  ⇒  Π_(k=1) ^n  I_k =Π_(k=1) ^n   ((2k)/(2k+1)) Π_(k=1) ^n  I_(k−1)  ⇒  I_n =Π_(k=1) ^n  ((2k)/(2k+1)) I_o      but I_0 =1 ⇒I_n =((Π_(k=1) ^n (2k))/(Π_(k=1) ^n  (2k+1)))  =((2^n n!)/(3.5.7.....(2n+1))) =((2^n n!)/(2.3.4.5...(2n)(2n+1))) ×2^n n!  =((2^(2n) (n!)^2 )/((2n+1)!))
wehaveIn=01(1t2)n1(1t2)dt=01(1t2)n101t2(1t2)n1dtbut01(1t2)n1dt=In1byparts01t2(1t2)n1dt=1201t(2t)(1t2)n1dtu=tandv=(2t)(1t2)n1=12{[1n(1t2)nt]01011n(1t2)ndt}=12nInIn=In112nIn(1+12n)In=In12n+12nIn=In1In=2n2n+1In1k=1nIk=k=1n2k2k+1k=1nIk1In=k=1n2k2k+1IobutI0=1In=k=1n(2k)k=1n(2k+1)=2nn!3.5.7..(2n+1)=2nn!2.3.4.5(2n)(2n+1)×2nn!=22n(n!)2(2n+1)!
Commented by Abdo msup. last updated on 27/Nov/18
2)we have  I_n =∫_0 ^1 (1−t^2 )^n dt  =∫_0 ^1  Σ_(k=0) ^n  C_n ^k  (−t^2 )^k  dt =Σ_(k=0) ^n  (−1)^k  C_n ^k  ∫_0 ^1  t^(2k)  dt  =Σ_(k=0) ^n (((−1)^k )/(2k+1)) C_n ^k   ⇒ Σ_(k=0) ^n   (((−1)^k )/(2k+1)) C_n ^k    =((2^(2n) (n!)^2 )/((2n+1)!)) .
2)wehaveIn=01(1t2)ndt=01k=0nCnk(t2)kdt=k=0n(1)kCnk01t2kdt=k=0n(1)k2k+1Cnkk=0n(1)k2k+1Cnk=22n(n!)2(2n+1)!.
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
∫_0 ^1 (1−t^2 )^n dt  t=sinθ  dt=cosθdθ  ∫_0 ^(π/2) cos^(2n) θ×cosθdθ  ∫_0 ^(π/2) (sinθ)^(2×(1/2)−1) ×(cosθ)^(2n+2−1) dθ  using gamma beta function  =((⌈((1/2))×⌈(2n+2))/(2⌈(2n+2+(1/2))))  =(((√π) ×⌈(2n+2))/(2⌈(2n+(5/2))))  formula 2∫_0 ^(π/2) sin^(2p−1) θcos^(2q−1) θdθ  =((⌈(p)⌈(q))/(⌈(p+q)))
01(1t2)ndtt=sinθdt=cosθdθ0π2cos2nθ×cosθdθ0π2(sinθ)2×121×(cosθ)2n+21dθusinggammabetafunction=(12)×(2n+2)2(2n+2+12)=π×(2n+2)2(2n+52)formula20π2sin2p1θcos2q1θdθ=(p)(q)(p+q)

Leave a Reply

Your email address will not be published. Required fields are marked *