Question Number 33342 by prof Abdo imad last updated on 14/Apr/18

Commented by prof Abdo imad last updated on 24/Apr/18
![I_n = ∫_R (1/x)(1−(1−(x/n))^n )χ_(]0^� 1]) (x)dx let put f_n (x)= (1/x)(1−(1−(x/n))^n )χ_(]0,1]) (x) f_n (x)^(c.s) → ((1−e^(−x) )/x) χ_(]0,1]) (x) (n→+∞) and f_n (x) ≤ ((1−e^(−x) )/x) ∀ x∈]0,1] conv.dominee ⇒ ∫_R f_n (x)dx _(n→+∞) → ∫_0 ^1 ((1−e^(−x) )/x)dx ⇒ lim_(n→+∞) I_n = ∫_0 ^1 ((1−e^(−x) )/x) dx .](https://www.tinkutara.com/question/Q33797.png)
Commented by prof Abdo imad last updated on 24/Apr/18

Commented by math khazana by abdo last updated on 25/Apr/18

Commented by math khazana by abdo last updated on 25/Apr/18
