Menu Close

let-I-n-0-1-1-x-1-1-x-n-n-dx-and-J-n-1-n-1-x-1-x-n-n-dx-n-integr-not-0-1-prove-that-lim-I-n-0-1-1-e-x-x-dx-lim-J-n-0-1-e-1-x-x-dx-n-2-




Question Number 33342 by prof Abdo imad last updated on 14/Apr/18
let I_n = ∫_0 ^1  (1/x)(1−(1−(x/n))^n )dx and  J_n  = ∫_1 ^n  (1/x)(1−(x/n))^n dx  ,n integr not 0  1) prove that lim_  I_n   =∫_0 ^1   ((1−e^(−x) )/x)dx  lim J_n  = ∫_0 ^1   (e^(−(1/x)) /x) dx (n→∞)  2) prove that  ∀n∈ N^★    I_n  −J_n  = Σ_(k=1) ^n  (1/k) −ln(n)  3) prove that  ∫_0 ^1    ((1−e^(−x)  −e^(−(1/x)) )/x) =γ
letIn=011x(1(1xn)n)dxandJn=1n1x(1xn)ndx,nintegrnot01)provethatlimIn=011exxdxlimJn=01e1xxdx(n)2)provethatnNInJn=k=1n1kln(n)3)provethat011exe1xx=γ
Commented by prof Abdo imad last updated on 24/Apr/18
I_n  = ∫_R  (1/x)(1−(1−(x/n))^n )χ_(]0^� 1]) (x)dx let put  f_n (x)= (1/x)(1−(1−(x/n))^n )χ_(]0,1]) (x)  f_n (x)^(c.s) → ((1−e^(−x) )/x) χ_(]0,1]) (x) (n→+∞) and  f_n (x) ≤ ((1−e^(−x) )/x) ∀ x∈]0,1] conv.dominee ⇒  ∫_R f_n (x)dx _(n→+∞) →  ∫_0 ^1   ((1−e^(−x) )/x)dx ⇒  lim_(n→+∞)  I_n = ∫_0 ^1  ((1−e^(−x) )/x) dx .
In=R1x(1(1xn)n)χ]01¯](x)dxletputfn(x)=1x(1(1xn)n)χ]0,1](x)fn(x)c.s1exxχ]0,1](x)(n+)andfn(x)1exxx]0,1]conv.domineeRfn(x)dxn+011exxdxlimn+In=011exxdx.
Commented by prof Abdo imad last updated on 24/Apr/18
changement x=(1/(t )) give   J_n = −∫_1 ^(1/n)   t(1−(1/(nt)))^n  (dt/t^2 ) = ∫_(1/n) ^1  (1/t)(1−(1/(nt)))^n dt ⇒  J_n  → ∫_0 ^1     (e^(−(1/t)) /t) dt (n→+∞)  so  lim_(n→+∞)  J_n  = ∫_0 ^1   (e^(−(1/t)) /t) dt .
changementx=1tgiveJn=11nt(11nt)ndtt2=1n11t(11nt)ndtJn01e1ttdt(n+)solimn+Jn=01e1ttdt.
Commented by math khazana by abdo last updated on 25/Apr/18
changement (x/n)=t give  J_n  = ∫_(1/n) ^1  (1/(nt))(1−t)^n  ndt = ∫_(1/n) ^1   (((1−t)^n )/t)dt ⇒  I_n  −J_n  = ∫_0 ^1   (1/x)( 1−(1−(x/n))^n )dx +∫_1 ^(1/n)   (((1−x)^n )/x)dx  = ∫_0 ^(1/n)    (1/x)( 1−(1−(x/n))^n  +(1−x)^n )dx  = ∫_0 ^(1/n)  (1/x)( 1+ Σ_(k=0) ^n  C_n ^k  (−1)^k  x^(k )  −Σ_(k=0) ^n  C_n ^k  (−1)^k  (x^k /n^k ))dx  = ∫_0 ^(1/n)   (1/x)(  Σ_(k=0) ^n  C_n ^k  (−1)^k x^k  −Σ_(k=1) ^n  C_n ^k  (−1)^k  (x^k /n^k ))dx  = ∫_0 ^(1/n)   (1/x)(   1+ Σ_(k=1) ^n  C_n ^k  (−1)^k  (1+ (1/n^k ))x^k )dx...be  continued ...
changementxn=tgiveJn=1n11nt(1t)nndt=1n1(1t)ntdtInJn=011x(1(1xn)n)dx+11n(1x)nxdx=01n1x(1(1xn)n+(1x)n)dx=01n1x(1+k=0nCnk(1)kxkk=0nCnk(1)kxknk)dx=01n1x(k=0nCnk(1)kxkk=1nCnk(1)kxknk)dx=01n1x(1+k=1nCnk(1)k(1+1nk)xk)dxbecontinued
Commented by math khazana by abdo last updated on 25/Apr/18
3) we have  I_n  −J_n = Σ_(k=1) ^n  (1/k) −ln(n) ⇒  lim_(n→+∞) (I_n  −J_n )=lim_(n→+∞) (Σ_(k=1) ^n  (1/k) −ln(n))=γ  ⇒ ∫_0 ^1   ((1− e^(−x) )/x)dx −∫_0 ^1   (e^(−(1/x)) /x)dx =γ ⇒  ∫_0 ^1    ((1−e^(−x)  −e^(−(1/x)) )/x) =γ  .
3)wehaveInJn=k=1n1kln(n)limn+(InJn)=limn+(k=1n1kln(n))=γ011exxdx01e1xxdx=γ011exe1xx=γ.

Leave a Reply

Your email address will not be published. Required fields are marked *