Menu Close

let-I-n-0-1-2-1-2t-n-e-t-dt-with-n-integr-not-0-1-prove-that-t-0-1-2-1-e-1-2t-n-1-2t-n-e-t-1-2t-n-then-find-lim-n-I-n-2-prove-that-I-n-1-1-2-n-1-I-n




Question Number 30764 by abdo imad last updated on 25/Feb/18
let  I_n = ∫_0 ^(1/2)  (1−2t)^n  e^(−t) dt  with n integr not 0  1) prove that ∀t∈[0,(1/2)]  (1/( (√e)))(1−2t)^n ≤ (1−2t)^n  e^(−t)  ≤(1−2t)^n  then find lim_(n→∞ ) I_n   2) prove that I_(n+1 ) =1−2(n+1)I_n   3) calculate I_1 ,I_2 , and I_3 .
letIn=012(12t)netdtwithnintegrnot01)provethatt[0,12]1e(12t)n(12t)net(12t)nthenfindlimnIn2)provethatIn+1=12(n+1)In3)calculateI1,I2,andI3.
Commented by abdo imad last updated on 01/Mar/18
1) for 0≤t≤(1/2) we have( 1−2t)^n ≥0  1≤e^t ≤ (√e) ⇒(1/( (√e)))≤e^(−t) ≤1  ⇒ (1/( (√e)))(1−2t)^n  ≤(1−2t)^n  e^(−t) ≤ (1−2t)^n  ⇒  (1/( (√e))) ∫_0 ^(1/2) (1−2t)^n dt ≤ ∫_0 ^(1/2) (1−2t)^n  e^(−t) dt ≤ ∫_0 ^(1/2)  (1−2t)^n dt but  (1/( (√e)))∫_0 ^(1/2) (1−2t)^n dt=(1/( (√e))) [ ((−1)/(2(n+1))) (1−2t)^(n+1) ]_0 ^(1/2) = (1/(2(n+1)(√e)))  ⇒ (1/(2(n+1)(√e)))≤ I_n ≤  (1/(2(n+1))) and its clear that   lim_(n→∞)  I_n =0  2) let integrate by parts u^′  =(1−2t)^n  and v=e^(−t)   I_n =[((−1)/(2(n+1)))(1−2t)^(n+1)  e^(−t) ]_0 ^(1/2)  +∫_0 ^(1/2)  ((−1)/(2(n+1)))(1−2t)^(n+1)  e^(−t) dt  =(1/(2(n+1))) −(1/(2(n+1))) I_(n+1)   ⇒2(n+1)I_n =1−I_(n+1)  ⇒  I_(n+1) =1−2(n+1)I_n   3)I_1 =1−2I_0  but I_0 = ∫_0 ^(1/2)  e^(−t) dt =[ −e^(−t) ]_0 ^(1/2) =1−e^((−1)/2) =1−(1/( (√e)))  I_2 =1−4I_1 =1−4(1−(1/( (√e))))=−3 +(4/( (√e))).  I_3 = 1−6 I_(2 ) =1−6(−3 +(4/( (√e))))=19 −((24)/( (√e)))  .
1)for0t12wehave(12t)n01ete1eet11e(12t)n(12t)net(12t)n1e012(12t)ndt012(12t)netdt012(12t)ndtbut1e012(12t)ndt=1e[12(n+1)(12t)n+1]012=12(n+1)e12(n+1)eIn12(n+1)anditsclearthatlimnIn=02)letintegratebypartsu=(12t)nandv=etIn=[12(n+1)(12t)n+1et]012+01212(n+1)(12t)n+1etdt=12(n+1)12(n+1)In+12(n+1)In=1In+1In+1=12(n+1)In3)I1=12I0butI0=012etdt=[et]012=1e12=11eI2=14I1=14(11e)=3+4e.I3=16I2=16(3+4e)=1924e.

Leave a Reply

Your email address will not be published. Required fields are marked *