Question Number 30764 by abdo imad last updated on 25/Feb/18
$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} {dt}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall{t}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{e}}}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \leqslant\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} \:\leqslant\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{then}\:{find}\:{lim}_{{n}\rightarrow\infty\:} {I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{I}_{{n}+\mathrm{1}\:} =\mathrm{1}−\mathrm{2}\left({n}+\mathrm{1}\right){I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,\:{and}\:{I}_{\mathrm{3}} . \\ $$
Commented by abdo imad last updated on 01/Mar/18
$$\left.\mathrm{1}\right)\:{for}\:\mathrm{0}\leqslant{t}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:{we}\:{have}\left(\:\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \geqslant\mathrm{0}\:\:\mathrm{1}\leqslant{e}^{{t}} \leqslant\:\sqrt{{e}}\:\Rightarrow\frac{\mathrm{1}}{\:\sqrt{{e}}}\leqslant{e}^{−{t}} \leqslant\mathrm{1} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\:\sqrt{{e}}}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:\leqslant\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} \leqslant\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{e}}}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} {dt}\:\leqslant\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} {dt}\:\leqslant\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} {dt}\:{but} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{e}}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} {dt}=\frac{\mathrm{1}}{\:\sqrt{{e}}}\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} =\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)\sqrt{{e}}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)\sqrt{{e}}}\leqslant\:{I}_{{n}} \leqslant\:\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\:{and}\:{its}\:{clear}\:{that}\: \\ $$$${lim}_{{n}\rightarrow\infty} \:{I}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{integrate}\:{by}\:{parts}\:{u}^{'} \:=\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{and}\:{v}={e}^{−{t}} \\ $$$${I}_{{n}} =\left[\frac{−\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}+\mathrm{1}} \:{e}^{−{t}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{−\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}+\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\:{I}_{{n}+\mathrm{1}} \:\:\Rightarrow\mathrm{2}\left({n}+\mathrm{1}\right){I}_{{n}} =\mathrm{1}−{I}_{{n}+\mathrm{1}} \:\Rightarrow \\ $$$${I}_{{n}+\mathrm{1}} =\mathrm{1}−\mathrm{2}\left({n}+\mathrm{1}\right){I}_{{n}} \\ $$$$\left.\mathrm{3}\right){I}_{\mathrm{1}} =\mathrm{1}−\mathrm{2}{I}_{\mathrm{0}} \:{but}\:{I}_{\mathrm{0}} =\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{t}} {dt}\:=\left[\:−{e}^{−{t}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1}−{e}^{\frac{−\mathrm{1}}{\mathrm{2}}} =\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{e}}} \\ $$$${I}_{\mathrm{2}} =\mathrm{1}−\mathrm{4}{I}_{\mathrm{1}} =\mathrm{1}−\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{e}}}\right)=−\mathrm{3}\:+\frac{\mathrm{4}}{\:\sqrt{{e}}}. \\ $$$${I}_{\mathrm{3}} =\:\mathrm{1}−\mathrm{6}\:{I}_{\mathrm{2}\:} =\mathrm{1}−\mathrm{6}\left(−\mathrm{3}\:+\frac{\mathrm{4}}{\:\sqrt{{e}}}\right)=\mathrm{19}\:−\frac{\mathrm{24}}{\:\sqrt{{e}}}\:\:. \\ $$$$ \\ $$