Menu Close

let-I-n-0-1-arctan-1-n-1-x-n-find-lim-n-I-n-




Question Number 33845 by prof Abdo imad last updated on 26/Apr/18
let I_n = ∫_0 ^1    ((arctan(1 +n))/( (√(1+x^n )))) find lim_(n→+∞)  I_n  .
letIn=01arctan(1+n)1+xnfindlimn+In.
Commented by prof Abdo imad last updated on 27/Apr/18
I_n = ∫_R   ((arctan(1+n))/( (√(1+x^n )))) χ_([0,1]) (x)dx  but  f_n (x)= ((arctan(1+n))/( (√(1+x^n )))) χ_([0,1]) (x)_(n→+∞)  →f(x)=(π/2) on[0,1]  so ∫_R f_n (x)dx → ∫_0 ^1 f(x)dx =(π/2) .
In=Rarctan(1+n)1+xnχ[0,1](x)dxbutfn(x)=arctan(1+n)1+xnχ[0,1](x)n+f(x)=π2on[0,1]soRfn(x)dx01f(x)dx=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *