Menu Close

let-I-n-0-1-x-n-1-x-dx-1-calculate-I-0-and-I-1-2-prove-that-n-N-3-2n-I-n-2n-I-n-1-3-find-I-n-interms-of-n-




Question Number 40139 by maxmathsup by imad last updated on 16/Jul/18
let  I_n = ∫_0 ^1   x^n (√(1−x)) dx  1) calculate I_0   and I_1   2) prove that  ∀n∈ N^★     (3+2n) I_n =2n I_(n−1)   3) find I_n   interms of n
letIn=01xn1xdx1)calculateI0andI12)provethatnN(3+2n)In=2nIn13)findInintermsofn
Commented by prof Abdo imad last updated on 20/Jul/18
1) I_0 =∫_0 ^1 (√(1−x))dx  =_(x=sin^2 t)   ∫_0 ^(π/2)   cost 2sint cost?dt  =2 ∫_0 ^(π/2)  sint cos^2 t dt =2[−(1/3) cos^3 t]_0 ^(π/2)   =−(2/3){0−1}=(2/3)  I_1 = ∫_0 ^1  x(√(1−x))dx =_((√(1−x))=t)     −∫_0 ^1 (1−t^2 )t(−2tdt)  =2 ∫_0 ^1  t^2 (1−t^2 )dt =2 ∫_0 ^1  (t^2  −t^4 )dt  =2 [(t^3 /3) −(t^5 /5)]_0 ^1  =2{(1/3) −(1/5)}=2(2/(15)) =(4/(15))
1)I0=011xdx=x=sin2t0π2cost2sintcost?dt=20π2sintcos2tdt=2[13cos3t]0π2=23{01}=23I1=01x1xdx=1x=t01(1t2)t(2tdt)=201t2(1t2)dt=201(t2t4)dt=2[t33t55]01=2{1315}=2215=415
Commented by maxmathsup by imad last updated on 24/Jul/18
2) changement (√(1−x))=t give 1−x=t^2   I_n = ∫_0 ^1   (1−t^2 )^n t  2tdt  =  ∫_0 ^1 2t^2 (1−t^2 )^n  dt  =_(t=sinα)   ∫_0 ^(π/2)  2sin^2 α cos^(2n) α cosα dα  = ∫_0 ^(π/2)  2sin^2 αcos^(2n) α dα  by parts  u^′  =sinα cos^(2n) α  and v=2sinα  I_n = [−(1/(2n+1)) cos^(2n+1) α 2sinα]_0 ^(π/2)  −∫_0 ^(π/2)  −(1/(2n+1))cos^(2n+1) α .2cosα dα  =(2/(2n+1)) ∫_0 ^(π/2)   cos^(2n+2) α dα = (2/(2n+1)) ∫_0 ^(π/2)  (1 −sin^2 α)cos^(2n) α dα  = (2/(2n+1)) ∫_0 ^(π/2)  cos^(2n) α dα −(1/(2n+1)) ∫_0 ^(π/2)  2sin^2 α cos^(2n) α dα  =(2/(2n+1)) ∫_0 ^(π/2) (1−sin^2 α)cos^(2(n−1)) α dα −(1/(2n+1)) I_n  ⇒  (1+(1/(2n+1))) I_n = (2/(2n+1)) ∫_0 ^(π/2)  cos^(2(n−1)) α dα −(1/(2n+1)) I_(n−1)   ⇒  ((2n+2)/(2n+1)) I_n = (2/(2n+1)) ∫_0 ^(π/2)  cos^(2(n−1)) α dα −(1/(2n+1)) I_(n−1)    ...be continued...
2)changement1x=tgive1x=t2In=01(1t2)nt2tdt=012t2(1t2)ndt=t=sinα0π22sin2αcos2nαcosαdα=0π22sin2αcos2nαdαbypartsu=sinαcos2nαandv=2sinαIn=[12n+1cos2n+1α2sinα]0π20π212n+1cos2n+1α.2cosαdα=22n+10π2cos2n+2αdα=22n+10π2(1sin2α)cos2nαdα=22n+10π2cos2nαdα12n+10π22sin2αcos2nαdα=22n+10π2(1sin2α)cos2(n1)αdα12n+1In(1+12n+1)In=22n+10π2cos2(n1)αdα12n+1In12n+22n+1In=22n+10π2cos2(n1)αdα12n+1In1becontinued
Commented by maxmathsup by imad last updated on 24/Jul/18
3) we have I_n =((2n)/(2n+3)) I_(n−1)     with n≥1 ⇒  Π_(k=1) ^n  I_k =Π_(k=1) ^n   ((2k)/(2k+3)) Π_(k=1) ^n  I_(k−1)   ⇒  I_1 .I_2 .I_3 ...I_n =Π_(k=1) ^n  ((2k)/(2k+3)) I_0 .I_1 .I_2 ....I_(n−1)  ⇒  I_n = Π_(k=1) ^n  ((2k)/(2k+3)) . I_0 = (2/3) Π_(k=1) ^n   ((2k)/(2k+3))
3)wehaveIn=2n2n+3In1withn1k=1nIk=k=1n2k2k+3k=1nIk1I1.I2.I3In=k=1n2k2k+3I0.I1.I2.In1In=k=1n2k2k+3.I0=23k=1n2k2k+3

Leave a Reply

Your email address will not be published. Required fields are marked *