Menu Close

let-I-n-0-1-x-n-3-x-dx-1-calculate-lim-n-I-n-2-calculate-lim-n-n-I-n-




Question Number 36413 by abdo.msup.com last updated on 01/Jun/18
let  I_n = ∫_0 ^1  x^n (√(3+x))dx  1)calculate lim_(n→+∞) I_n   2) calculate lim_(n→+∞)  n I_n
letIn=01xn3+xdx1)calculatelimn+In2)calculatelimn+nIn
Commented by abdo.msup.com last updated on 04/Jun/18
1) we have 0≤x≤1  ⇒ 3≤3+x≤4 ⇒  (√3) ≤(√(3+x))≤2  ⇒ ∫_0 ^1 (√3) x^n dx≤I_n ≤∫_0 ^1  2x^n dx  ⇒ ((√3)/(n+1))  ≤ I_n ≤ (2/(n+1)) →_(n→+∞) 0 so  lim_(n→+∞)  I_n =0  2) by parts  I_n  =[ (1/(n+1))x^(n+1) (√(3+x))]_0 ^1   −∫_0 ^1  (x^(n+1) /(n+1))  (1/(2(√(3+x))))dx  =(2/(n+1))  −(1/(2(n+1))) ∫_0 ^1     (x^(n+1) /( (√(3+x))))dx⇒  nI_n  = ((2n)/(n+1)) −(n/(2n+2)) ∫_0 ^1   (x^(n+1) /( (√(3+x))))dx but            (√3)≤(√(3+x))≤2 ⇒ (1/2) ≤ (1/( (√(3+x))))≤(√3)  ⇒ (x^(n+1) /2) ≤ (x^(n+1) /( (√(3+x)))) ≤ (√3) x^(n+1)  ⇒   ∫_0 ^1   (x^(n+1) /2)dx≤ ∫_0 ^1    (x^(n+1) /( (√(3+x))))dx≤ (√3)∫_0 ^1  x^(n+1) dx  ⇒ (1/(2(n+2))) ≤ ∫_0 ^1  (x^(n+1) /( (√(3+x))))dx≤ ((√3)/(n+1)) so  lim_(n→+∞)  ∫_0 ^1   (x^(n+1) /( (√(3+x))))dx =0 ⇒  lim n I_n  =2 (n→+∞)
1)wehave0x133+x433+x2013xndxIn012xndx3n+1In2n+1n+0solimn+In=02)bypartsIn=[1n+1xn+13+x]0101xn+1n+1123+xdx=2n+112(n+1)01xn+13+xdxnIn=2nn+1n2n+201xn+13+xdxbut33+x21213+x3xn+12xn+13+x3xn+101xn+12dx01xn+13+xdx301xn+1dx12(n+2)01xn+13+xdx3n+1solimn+01xn+13+xdx=0limnIn=2(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *