Menu Close

let-I-n-0-2pi-dx-p-cost-n-with-p-gt-1-find-the-value-of-I-n-




Question Number 38114 by maxmathsup by imad last updated on 21/Jun/18
let I_n = ∫_0 ^(2π)     (dx/((p +cost)^n ))  with p>1  find the value of I_n
letIn=02πdx(p+cost)nwithp>1findthevalueofIn
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
changement  e^(it) =z give   I_n = ∫_(∣z∣=1)    (1/((p +((z+z^(−1) )/2))^n )) (dz/(iz))  = ∫_(∣z∣=1)   ((−i 2^n )/((2p +z+z^(−1) )^n )) (dz/z)  = ∫_(∣z∣=1)        ((−i 2^n )/(z{2p +z +(1/z)}^n ))dz  = ∫_(∣z∣=1)      ((−i2^n  z^(n−1) )/({2pz +z^2  +1}^n ))dz  let  ϕ(z) =  ((−i 2^n z^(n−1) )/((z^2  +2pz +1)^n ))  poles of ϕ?  z^2  +2pz +1=0  Δ^′  =p^2  −1>0 ⇒ real roots  z_1 =−p +(√(p^2  −1 ))    and z_2 =−p−(√(p^2  −1))  we have proved that ∣z_1 ∣<1  and ∣z_2 ∣>1 so  ∫_(∣z∣=1) ^  ϕ(z)dz  =2iπ Res(ϕ,z_1 )  we?have  ϕ(z) = ((−i 2^n z^(n−1) )/((z−z_1 )^n (z−z_2 )^n )) ⇒  Res(ϕ,z_1 ) =lim_(z→z_1 )   (1/((n−1)!)){ (z−z_1 )^n  ϕ(z)}^((n−1))   =−i 2^n  lim_(z→z_1 ) (1/((n−1)!)){  (z^(n−1) /((z−z_2 )^n ))}^()n−1))   but  { z^(n−1) (z−z_2 )^(−n) }^((n−1))   = Σ_(k=0) ^(n−1 )    C_(n−1) ^(k )   {(z−z_2 )^(−n) }^((k))  (z^(n−1) )^((n−1−k))   we have  (z−z_2 )^(−n) }^((1)) =−n(z−z_2 )^(−n−1)   {(z−z_2 )^(−n) }^((2)) =(−1)^2 n(n+1)(z−z_2 )^(−n−2)   { (z−z_2 )^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z−z_2 )^(−n−k)   also  (z^n )^((p)) =n(n−1)...(n−p+1)z^(n−p)   if p≤n⇒  (z^(n−1) )^((n−1−k)) =(n−1)(n−2)...(n−1−n+1+k +1)z^(n−1−n+1+k)   =(n−1)(n−2).....(k+1) z^k   =(((n−1)!)/(k!)) z^k  ⇒  {z^(n−1) (z−z_2 )^(−n) }^((n−1)) =  =Σ_(k=0) ^(n−1)   C_(n−1) ^k  (−1)^k  n(n+1)...(n+k−1)(z−z_2 )^(−n−k)  (((n−1)!)/(k!)) z^k   Res(ϕ,z_1 )=  −i 2^n   Σ_(k=0) ^(n−1)   C_(n−1) ^k (−1)^k n(n+1)...(n+k−1)(z_1 −z_2 )^(−n−k)  (z_1 ^k /(k!))  ∫_(∣z∣=1) ϕ(z)dz =π 2^(n+1)  A_n   with  A_n  =Σ_(k=0) ^(n−1)   C_(n−1) ^k (−1)^k n(n+1)...(n+k−1)(2(√(p^2  −1)))^(−n−k)  (((−p+(√(p^2  −1)))^k )/(k!))  = I_p
changementeit=zgiveIn=z∣=11(p+z+z12)ndziz=z∣=1i2n(2p+z+z1)ndzz=z∣=1i2nz{2p+z+1z}ndz=z∣=1i2nzn1{2pz+z2+1}ndzletφ(z)=i2nzn1(z2+2pz+1)npolesofφ?z2+2pz+1=0Δ=p21>0realrootsz1=p+p21andz2=pp21wehaveprovedthatz1∣<1andz2∣>1soz∣=1φ(z)dz=2iπRes(φ,z1)we?haveφ(z)=i2nzn1(zz1)n(zz2)nRes(φ,z1)=limzz11(n1)!{(zz1)nφ(z)}(n1)=i2nlimzz11(n1)!{zn1(zz2)n})n1)but{zn1(zz2)n}(n1)=k=0n1Cn1k{(zz2)n}(k)(zn1)(n1k)wehave(zz2)n}(1)=n(zz2)n1{(zz2)n}(2)=(1)2n(n+1)(zz2)n2{(zz2)n}(k)=(1)kn(n+1)(n+k1)(zz2)nkalso(zn)(p)=n(n1)(np+1)znpifpn(zn1)(n1k)=(n1)(n2)(n1n+1+k+1)zn1n+1+k=(n1)(n2)..(k+1)zk=(n1)!k!zk{zn1(zz2)n}(n1)==k=0n1Cn1k(1)kn(n+1)(n+k1)(zz2)nk(n1)!k!zkRes(φ,z1)=i2nk=0n1Cn1k(1)kn(n+1)(n+k1)(z1z2)nkz1kk!z∣=1φ(z)dz=π2n+1AnwithAn=k=0n1Cn1k(1)kn(n+1)(n+k1)(2p21)nk(p+p21)kk!=Ip
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
I_n = ∫_(∣z∣=1)  ϕ(z)dz =π 2^(n+1)  A_n
In=z∣=1φ(z)dz=π2n+1An

Leave a Reply

Your email address will not be published. Required fields are marked *