let-I-n-0-2pi-dx-p-cost-n-with-p-gt-1-find-the-value-of-I-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38114 by maxmathsup by imad last updated on 21/Jun/18 letIn=∫02πdx(p+cost)nwithp>1findthevalueofIn Commented by abdo mathsup 649 cc last updated on 08/Jul/18 changementeit=zgiveIn=∫∣z∣=11(p+z+z−12)ndziz=∫∣z∣=1−i2n(2p+z+z−1)ndzz=∫∣z∣=1−i2nz{2p+z+1z}ndz=∫∣z∣=1−i2nzn−1{2pz+z2+1}ndzletφ(z)=−i2nzn−1(z2+2pz+1)npolesofφ?z2+2pz+1=0Δ′=p2−1>0⇒realrootsz1=−p+p2−1andz2=−p−p2−1wehaveprovedthat∣z1∣<1and∣z2∣>1so∫∣z∣=1φ(z)dz=2iπRes(φ,z1)we?haveφ(z)=−i2nzn−1(z−z1)n(z−z2)n⇒Res(φ,z1)=limz→z11(n−1)!{(z−z1)nφ(z)}(n−1)=−i2nlimz→z11(n−1)!{zn−1(z−z2)n})n−1)but{zn−1(z−z2)−n}(n−1)=∑k=0n−1Cn−1k{(z−z2)−n}(k)(zn−1)(n−1−k)wehave(z−z2)−n}(1)=−n(z−z2)−n−1{(z−z2)−n}(2)=(−1)2n(n+1)(z−z2)−n−2{(z−z2)−n}(k)=(−1)kn(n+1)…(n+k−1)(z−z2)−n−kalso(zn)(p)=n(n−1)…(n−p+1)zn−pifp⩽n⇒(zn−1)(n−1−k)=(n−1)(n−2)…(n−1−n+1+k+1)zn−1−n+1+k=(n−1)(n−2)…..(k+1)zk=(n−1)!k!zk⇒{zn−1(z−z2)−n}(n−1)==∑k=0n−1Cn−1k(−1)kn(n+1)…(n+k−1)(z−z2)−n−k(n−1)!k!zkRes(φ,z1)=−i2n∑k=0n−1Cn−1k(−1)kn(n+1)…(n+k−1)(z1−z2)−n−kz1kk!∫∣z∣=1φ(z)dz=π2n+1AnwithAn=∑k=0n−1Cn−1k(−1)kn(n+1)…(n+k−1)(2p2−1)−n−k(−p+p2−1)kk!=Ip Commented by abdo mathsup 649 cc last updated on 08/Jul/18 In=∫∣z∣=1φ(z)dz=π2n+1An Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-1-1-2-3-3-2-3-4-5-3-4-5-2n-1-n-n-1-n-2-Next Next post: find-I-0-cos-x-ch-2x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.