Question Number 37896 by abdo mathsup 649 cc last updated on 19/Jun/18
![let I_n = ∫_0 ^n (((−1)^([x]) )/((2x+1)^2 ))dx 1) calculate I_n interms of n 2) find lim_(n→+∞) I_n](https://www.tinkutara.com/question/Q37896.png)
Commented by prof Abdo imad last updated on 19/Jun/18
![1) I_n = Σ_(k=0) ^(n−1) ∫_k ^(k+1) (((−1)^k )/((2x+1)^2 ))dx =Σ_(k=0) ^(n−1) (−1)^k [−(1/(2(2x+1)))]_k ^(k+1) =−(1/2) Σ_(k=0) ^(n−1) (−1)^k { (1/(2k+3)) −(1/(2k+1))} =−(1/2)Σ_(k=0) ^(n−1) (((−1)^k )/(2k+3)) +(1/2)Σ_(k=0) ^(n−1) (((−1)^k )/(2k+1)) but Σ_(k=0) ^(n−1) (((−1)^k )/(2k+3)) = (1/3) +Σ_(k=1) ^(n−1) (((−1)^k )/(2k+3)) =_(k−1=p) (1/3) +Σ_(p=0) ^(n−2) (((−1)^(p+1) )/(2p+1)) =(1/3) − Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) ⇒ I_n = −(1/6) +(1/2) Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) +(1/2)Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) +(((−1)^(n−1) )/(2n−1)) I_n =−(1/6) +(((−1)^(n−1) )/(2n−1)) +Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) 2)lim_(n→+∞) I_n =−(1/6) +Σ_(k=0) ^∞ (((−1)^k )/(2k+1)) =(π/4) −(1/6) .](https://www.tinkutara.com/question/Q37925.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
![[x]=0 1>x≥0 [x]=1 2>x≥1 [x]=2 3>x≥2 thus the value of (−1)^([x]) is either +1 or −1 ∫_0 ^1 (1/((2x+1)^2 ))dx+∫_1 ^2 ((−1)/((2x+1)^2 ))+∫_2 ^3 (1/((2x+1)^2 ))+... +∫_(n−1) ^n (((−1)^(n−1) )/((2x+1)^2 ))dx contd](https://www.tinkutara.com/question/Q37904.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
