Menu Close

let-I-n-0-n-1-x-2x-1-2-dx-1-calculate-I-n-interms-of-n-2-find-lim-n-I-n-




Question Number 37896 by abdo mathsup 649 cc last updated on 19/Jun/18
let I_n = ∫_0 ^n     (((−1)^([x]) )/((2x+1)^2 ))dx  1) calculate I_n   interms of n  2) find lim_(n→+∞)  I_n
letIn=0n(1)[x](2x+1)2dx1)calculateInintermsofn2)findlimn+In
Commented by prof Abdo imad last updated on 19/Jun/18
1) I_n  = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)    (((−1)^k )/((2x+1)^2 ))dx  =Σ_(k=0) ^(n−1) (−1)^k [−(1/(2(2x+1)))]_k ^(k+1)   =−(1/2) Σ_(k=0) ^(n−1) (−1)^k {   (1/(2k+3)) −(1/(2k+1))}  =−(1/2)Σ_(k=0) ^(n−1)   (((−1)^k )/(2k+3))  +(1/2)Σ_(k=0) ^(n−1)  (((−1)^k )/(2k+1)) but  Σ_(k=0) ^(n−1)   (((−1)^k )/(2k+3)) = (1/3) +Σ_(k=1) ^(n−1)    (((−1)^k )/(2k+3))  =_(k−1=p)   (1/3) +Σ_(p=0) ^(n−2)    (((−1)^(p+1) )/(2p+1))  =(1/3) − Σ_(k=0) ^(n−2)    (((−1)^k )/(2k+1)) ⇒  I_n  = −(1/6)  +(1/2) Σ_(k=0) ^(n−2)   (((−1)^k )/(2k+1))  +(1/2)Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) +(((−1)^(n−1) )/(2n−1))  I_n =−(1/6) +(((−1)^(n−1) )/(2n−1))  +Σ_(k=0) ^(n−2)     (((−1)^k )/(2k+1))  2)lim_(n→+∞)   I_n =−(1/6) +Σ_(k=0) ^∞  (((−1)^k )/(2k+1))  =(π/4) −(1/6) .
1)In=k=0n1kk+1(1)k(2x+1)2dx=k=0n1(1)k[12(2x+1)]kk+1=12k=0n1(1)k{12k+312k+1}=12k=0n1(1)k2k+3+12k=0n1(1)k2k+1butk=0n1(1)k2k+3=13+k=1n1(1)k2k+3=k1=p13+p=0n2(1)p+12p+1=13k=0n2(1)k2k+1In=16+12k=0n2(1)k2k+1+12k=0n2(1)k2k+1+(1)n12n1In=16+(1)n12n1+k=0n2(1)k2k+12)limn+In=16+k=0(1)k2k+1=π416.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
[x]=0   1>x≥0  [x]=1  2>x≥1  [x]=2  3>x≥2  thus the value of (−1)^([x])  is either +1 or −1  ∫_0 ^1 (1/((2x+1)^2 ))dx+∫_1 ^2 ((−1)/((2x+1)^2 ))+∫_2 ^3 (1/((2x+1)^2 ))+...  +∫_(n−1) ^n (((−1)^(n−1) )/((2x+1)^2 ))dx  contd
[x]=01>x0[x]=12>x1[x]=23>x2thusthevalueof(1)[x]iseither+1or1011(2x+1)2dx+121(2x+1)2+231(2x+1)2++n1n(1)n1(2x+1)2dxcontd
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Leave a Reply

Your email address will not be published. Required fields are marked *