Menu Close

let-I-n-0-pi-vos-nt-1-2-cost-2-dt-1-calculate-I-0-and-I-1-2-find-relation-between-I-n-1-I-n-and-I-n-1-3-calculate-I-n-




Question Number 50427 by Abdo msup. last updated on 16/Dec/18
let I_n (λ) =∫_0 ^π   ((vos(nt))/(1−2λcost +λ^2 ))dt  1)calculate I_0 (λ) and I_1 (λ)  2) find relation between I_(n−1) ,I_n  and I_(n+1)   3) calculate I_n (λ).
letIn(λ)=0πvos(nt)12λcost+λ2dt1)calculateI0(λ)andI1(λ)2)findrelationbetweenIn1,InandIn+13)calculateIn(λ).
Commented by Abdo msup. last updated on 20/Dec/18
1)I_0 (λ)=∫_0 ^π    (dt/(1−2λcost +λ^2 ))  changement tan((t/2))=x  give I_0 (λ)=∫_0 ^∞    (1/(1−2λ((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 ))  =∫_0 ^∞     ((2dx)/(1+x^2 −2λ(1−x^2 ))) =∫_0 ^∞   ((2dx)/((1+2λ)x^2  +1−2λ))  =(2/(1+2λ))∫_0 ^∞      (dx/(x^2  +((1−2λ)/(1+2λ))))  case 1  ((1−2λ)/(1+2λ))>0  we do the changement   x=(√((1−2λ)/(1+2λ)))u ⇒I_0 (λ)=(2/(1+2λ))∫_0 ^∞  ((√((1−2λ)/(1+2λ)))/(((1−2λ)/(1+2λ))(1+u^2 )))du  =(2/(1+2λ)) ((√(1+2λ))/( (√(1−2λ)))) ∫_0 ^∞   (du/(1+u^2 )) =(2/( (√(1−4λ^2 )))) (π/2)  =(π/( (√(1−4λ^2 )))) .  case 2  ((1−2λ)/(1+2λ))<0 ⇒ I_0 (λ)=(2/(1+2λ)) ∫_0 ^∞  (dx/(x^2 −((√((2λ−1)/(2λ+1))))^2 ))  =(2/(1+2λ)) (1/(2(√((2λ−1)/(2λ+1)))))∫_0 ^∞ ((1/(x−(√((2λ−1)/(2λ+1))))) −(1/(x+(√((2λ−1)/(2λ+1))))))dx  = (1/( (√(4λ^2 −1)))) [ln∣((x−(√((2λ−1)/(2λ+1))))/(x+(√((2λ−1)/(2λ+1)))))∣]_0 ^(+∞) =0 .
1)I0(λ)=0πdt12λcost+λ2changementtan(t2)=xgiveI0(λ)=0112λ1x21+x22dx1+x2=02dx1+x22λ(1x2)=02dx(1+2λ)x2+12λ=21+2λ0dxx2+12λ1+2λcase112λ1+2λ>0wedothechangementx=12λ1+2λuI0(λ)=21+2λ012λ1+2λ12λ1+2λ(1+u2)du=21+2λ1+2λ12λ0du1+u2=214λ2π2=π14λ2.case212λ1+2λ<0I0(λ)=21+2λ0dxx2(2λ12λ+1)2=21+2λ122λ12λ+10(1x2λ12λ+11x+2λ12λ+1)dx=14λ21[lnx2λ12λ+1x+2λ12λ+1]0+=0.
Commented by Abdo msup. last updated on 23/Dec/18
I_1 (λ)=∫_0 ^π    ((cos(t))/(1−2λcost +λ^2 ))dt  changement tan((t/2))=x   give I_1 (λ)=∫_0 ^∞    (((1−x^2 )/(1+x^2 ))/(1−2λ((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 ))  =∫_0 ^∞     ((1−x^2 )/((1+x^2 )^2 ( 1−2λ ((1−x^2 )/(1+x^2 )))))dx  =∫_0 ^∞    ((1−x^2 )/((1+x^2 )^(2 ) −2λ(1−x^4 )))dx  =∫_0 ^∞    ((1−x^2 )/(x^4  +2x^2  +1 −2λ +2λx^4 ))dx  =∫_0 ^∞    ((1−x^2 )/((2λ+1)x^4  +2x^2  +1−2λ))dx let decompose  F(x)=((1−x^2 )/((2λ+1)x^4  +2x^2  +1−2λ))  F(x) =g(t) with x^2 =t and g(t) =((1−t^2 )/((2λ+1)t^2  +2t +1−2λ))  Δ^,  =1−(1+2λ)(1−2λ)=1−(1−4λ^2 )  =4λ^2  ⇒t_1 = ((−1 +2∣λ∣)/(2λ+1 ))  and  t_2 =((−1−2∣λ∣)/(2λ +1))  case1 λ>0 ⇒ t_1 =((−1+2λ)/(2λ +1)) and t_2 =((−1−2λ)/(2λ+1))=−1 ⇒  g(t) =((1−t^2 )/((2λ+1)(t−t_1 )(t−t_2 )))  g(t)=−((t^2  −1)/((2λ+1)t^2  +2t +1−2λ))  =−(1/((2λ+1))) (((2λ+1)t^2 −(2λ+1))/((2λ+1)t^2  +2t +1−2λ))  =((−1)/(2λ+1)) {  (((2λ+1)t^2  +2t +1−2λ −2t−1+2λ−2λ−1)/((2λ+1)t^2  +2t +1−2λ))}  =−(1/(2λ +1)){1 −((2t+2)/((2λ+1)t^2  +2t+ 1−2λ))}  =−(1/(2λ +1)) −((2t +2)/((2λ+1){(2λ+1)t^2 +2t +1−2λ}))  ....be continued...
I1(λ)=0πcos(t)12λcost+λ2dtchangementtan(t2)=xgiveI1(λ)=01x21+x212λ1x21+x22dx1+x2=01x2(1+x2)2(12λ1x21+x2)dx=01x2(1+x2)22λ(1x4)dx=01x2x4+2x2+12λ+2λx4dx=01x2(2λ+1)x4+2x2+12λdxletdecomposeF(x)=1x2(2λ+1)x4+2x2+12λF(x)=g(t)withx2=tandg(t)=1t2(2λ+1)t2+2t+12λΔ,=1(1+2λ)(12λ)=1(14λ2)=4λ2t1=1+2λ2λ+1andt2=12λ2λ+1case1λ>0t1=1+2λ2λ+1andt2=12λ2λ+1=1g(t)=1t2(2λ+1)(tt1)(tt2)g(t)=t21(2λ+1)t2+2t+12λ=1(2λ+1)(2λ+1)t2(2λ+1)(2λ+1)t2+2t+12λ=12λ+1{(2λ+1)t2+2t+12λ2t1+2λ2λ1(2λ+1)t2+2t+12λ}=12λ+1{12t+2(2λ+1)t2+2t+12λ}=12λ+12t+2(2λ+1){(2λ+1)t2+2t+12λ}.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *