Menu Close

let-I-n-1-n-n-2-xy-dxdy-2-x-2-y-2-find-lim-I-n-when-n-




Question Number 34717 by abdo mathsup 649 cc last updated on 10/May/18
let I_n = ∫∫_([(1/n),n]^2 )      (((√(xy)) dxdy)/(2 +x^2  +y^2 ))  find lim I_n  when n→+∞.
letIn=[1n,n]2xydxdy2+x2+y2findlimInwhenn+.
Commented by prof Abdo imad last updated on 11/May/18
let consider the diffeomorphism  (r,θ)→(x,y) =(r cosθ,r sinθ)  we have  (1/n)≤x^ ≤n  ,(1/n)≤ y≤n ⇒ (2/n^2 )≤x^2  +y^2 ≤ 2n^2  ⇒  ((√2)/n)≤r≤(√2) n  I_n  = ∫∫_(((√2)/n)≤r≤(√2) n   ,  0≤θ≤(π/2))     ((r(√(cosθsinθ)))/(2+r^2 )) r dr dθ  = ∫_(((√2)/n) ) ^((√2) n)    (r^2 /(2+r^2 )) dr  ∫_0 ^(π/2)  (√(cosθ sinθ)) dθ  but  ∫_((√2)/n) ^(n(√2))   (r^2 /(2+r^2 ))dr = ∫_((√2)/n) ^(n(√2))   ((2+r^2  −2)/(2+r^2 )) dr  =n(√2)  −((√2)/n)    −2 ∫_((√2)/n) ^(n(√2))     (dr/(2+r^2 ))    ( r=u(√2))  =n(√2)  −((√2)/n) −  ∫_(1/n) ^n     (((√2)  du)/(2(1+u^2 )))  =n(√2)  −((√2)/n) −((√2)/2)  (arctan(n) −arctan((1/n)))  =n(√2)  −((√2)/n) −((√2)/2)( 2arctan(n) −(π/2))  ∫_0 ^(π/2) (√(cosθsinθ)) dθ = (1/( (√2))) ∫_0 ^(π/2)   (√(sin(2θ))) dθ  (2θ=t)  =(1/( (√2))) ∫_0 ^π   (√(sint))   (dt/2) = (1/(2(√2))) ∫_0 ^π  (√(sint))   dt  ch. (√(sint_  )) =x  give sint =x^2  ⇒ t =arcsin(x^2 )  ∫_0 ^π (√(sint)) dt = ∫_0 ^(π/2)  (√(sint)) dt  + ∫_(π/2) ^π  (√(sint))dt  = ∫_0 ^1    x   ((2x)/( (√(1−x^4 )))) dx =  ∫_0 ^1   ((2x^2 )/( (√(1−x^4 )))) dx....  but n(√2) −((√2)/n)  −((√2)/2){ 2arctan(n)−(π/2)}  ∼n(√2) −((√2)/2) (π/2) ∼ n(√2)  ⇒ lim_(n→+∞)  I_n =+∞
letconsiderthediffeomorphism(r,θ)(x,y)=(rcosθ,rsinθ)wehave1nxn,1nyn2n2x2+y22n22nr2nIn=2nr2n,0θπ2rcosθsinθ2+r2rdrdθ=2n2nr22+r2dr0π2cosθsinθdθbut2nn2r22+r2dr=2nn22+r222+r2dr=n22n22nn2dr2+r2(r=u2)=n22n1nn2du2(1+u2)=n22n22(arctan(n)arctan(1n))=n22n22(2arctan(n)π2)0π2cosθsinθdθ=120π2sin(2θ)dθ(2θ=t)=120πsintdt2=1220πsintdtch.sint=xgivesint=x2t=arcsin(x2)0πsintdt=0π2sintdt+π2πsintdt=01x2x1x4dx=012x21x4dx.butn22n22{2arctan(n)π2}n222π2n2limn+In=+

Leave a Reply

Your email address will not be published. Required fields are marked *