Menu Close

let-I-n-x-0-t-sin-t-t-2-x-2-n-dt-1-find-a-relation-between-I-n-1-and-I-n-2-calculate-I-2-x-and-I-3-x-3-calculate-0-tsin-t-2-t-2-2-dt-




Question Number 36187 by prof Abdo imad last updated on 30/May/18
let I_n (x)= ∫_0 ^∞    ((t sin(t))/((t^2  +x^2 )^n ))dt   1) find a relation between I_(n+1)   and I_n   2) calculate I_2 (x) and I_3 (x)   3) calculate  ∫_0 ^∞  ((tsin(t))/((2+t^2 )^2 ))dt
letIn(x)=0tsin(t)(t2+x2)ndt1)findarelationbetweenIn+1andIn2)calculateI2(x)andI3(x)3)calculate0tsin(t)(2+t2)2dt
Commented by maxmathsup by imad last updated on 15/Aug/18
3)  let  A = ∫_0 ^∞    ((t sint)/((2+t^2 )^2 )) dt  changement t =(√2)x give  A =∫_0 ^∞      (((√2)xsin((√2)x))/(4(1+x^2 ))) (√2)dx =(1/2) ∫_0 ^∞   ((xsin(x(√2)))/((x^2 +1)^2 ))dx  =(1/4) ∫_(−∞) ^(+∞)   ((x sin(x(√2)))/((x^2  +1)^2 ))dx ⇒  4A = Im( ∫_(−∞) ^(+∞)     ((x e^(ix(√2)) )/((x^2  +1)^2 ))) let considere the complex function  ϕ(z) = ((z e^(iz(√2)) )/((z^2  +1)^2 )) ⇒ϕ(z) =  ((z e^(iz(√2)) )/((z−i)^2 (z+i)^2 ))  so the poles of ϕ are i and −i  (doubles) residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  but  Res(ϕ,i) =lim_(z→i)     (1/((2−1)! ))  {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {  ((z e^(iz(√2)) )/((z+i)^2 ))}^((1))  =lim_(z→i)   (((e^(iz(√2))  +i(√2)z e^(iz(√2)) )(z+i)^2 −2(z+i)ze^(iz(√2)) )/((z+i)^4 ))  =lim_(z→i)    (((z+i) (e^(iz(√2)) +i(√2)z e^(iz(√2)) )−2 z e^(iz(√2)) )/((z+i)^3 ))  =(((2i)( e^(−(√2))  −(√2)e^(−(√2)) )−2i e^(−(√2)) )/((2i)^3 ))  ((−2(√2)i e^(−(√2)) )/(−8i)) = ((√2)/4) e^(−(√2))    ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((√2)/4) e^(−(√2))   =((iπ(√2))/2) e^(−(√2))   4A =Im( ∫_(−∞) ^(+∞)  ϕ(z)dz ) =((π(√2))/2) e^(−(√2))  ⇒ A =((π(√2))/8) e^(−(√2))   .
3)letA=0tsint(2+t2)2dtchangementt=2xgiveA=02xsin(2x)4(1+x2)2dx=120xsin(x2)(x2+1)2dx=14+xsin(x2)(x2+1)2dx4A=Im(+xeix2(x2+1)2)letconsiderethecomplexfunctionφ(z)=zeiz2(z2+1)2φ(z)=zeiz2(zi)2(z+i)2sothepolesofφareiandi(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zeiz2(z+i)2}(1)=limzi(eiz2+i2zeiz2)(z+i)22(z+i)zeiz2(z+i)4=limzi(z+i)(eiz2+i2zeiz2)2zeiz2(z+i)3=(2i)(e22e2)2ie2(2i)322ie28i=24e2+φ(z)dz=2iπ24e2=iπ22e24A=Im(+φ(z)dz)=π22e2A=π28e2.
Commented by maxmathsup by imad last updated on 19/Aug/18
2) we have I_2 (x)= ∫_0 ^∞     ((t sint)/((t^2  +x^2 )^2 )) dt  =(1/2)  ∫_(−∞) ^(+∞)   ((tsint)/((t^2  +x^2 )^2 ))dt ⇒  2I_2 (x) =Im( ∫_(−∞) ^(+∞)    ((t e^(it) )/((t^2  +x^2 )^2 ))dt)=Im(A(x))  changement t=xu give  A(x) = ∫_(−∞) ^(+∞)    ((xu e^(ixu) )/(x^4 (1+u^2 )^2 )) x du  = (1/x^2 ) ∫_(−∞) ^(+∞)    ((u e^(ixu) )/((u^2  +1)^2 )) du (we suppose x>0)  let consider the complex function ϕ(z) =((z e^(ixz) )/((z^2  +1)^2 ))  ϕ(z) =((z e^(ixz) )/((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i)  but  Res(ϕ,i) =lim_(z→i)  (1/((2−1!)) {  (z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    { ((z e^(ixz) )/((z+i)^2 ))}^((1)) =lim_(z→i)   (((e^(ixz)   +ixz e^(ixz) )(z+i)^2  −2(z+i)z e^(ixz) )/((z+i)^4 ))  =lim_(z→i)    (((1+ixz)e^(ixz) (z+i)−2z e^(ixz) )/((z+i)^3 ))  =(((1−x)e^(−x) (2i)−2i e^(−x) )/((2i)^3 ))  = ((2i(1−x)e^(−x)  −2i e^(−x) )/(−8i))  =(((2−2x−2)e^(−x) )/(−8)) = ((x e^(−x) )/4) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((x e^(−x) )/4) =((iπ)/2) x e^(−x)  ⇒  2I_2 (x) = ((πx)/2) e^(−x)  ⇒ I_2 (x) =((πx)/4) e^(−x)   .  if  x<0  x =−α  with α>0 ⇒I_2 (x)=I_2 (−α) =∫_0 ^∞   ((tsint)/((t^2  +α^2 )^2 )) =I_2 (α)  =((πα)/4) e^(−α)   =−((πx)/4) e^x  .
2)wehaveI2(x)=0tsint(t2+x2)2dt=12+tsint(t2+x2)2dt2I2(x)=Im(+teit(t2+x2)2dt)=Im(A(x))changementt=xugiveA(x)=+xueixux4(1+u2)2xdu=1x2+ueixu(u2+1)2du(wesupposex>0)letconsiderthecomplexfunctionφ(z)=zeixz(z2+1)2φ(z)=zeixz(zi)2(z+i)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21!{(zi)2φ(z)}(1)=limzi{zeixz(z+i)2}(1)=limzi(eixz+ixzeixz)(z+i)22(z+i)zeixz(z+i)4=limzi(1+ixz)eixz(z+i)2zeixz(z+i)3=(1x)ex(2i)2iex(2i)3=2i(1x)ex2iex8i=(22x2)ex8=xex4+φ(z)dz=2iπxex4=iπ2xex2I2(x)=πx2exI2(x)=πx4ex.ifx<0x=αwithα>0I2(x)=I2(α)=0tsint(t2+α2)2=I2(α)=πα4eα=πx4ex.
Commented by maxmathsup by imad last updated on 19/Aug/18
error at the final line  we have A(x)=(1/x^2 ) ∫_(−∞) ^(+∞)  ϕ(z)dz   =(1/x^2 ) ((iπ)/2) x e^(−x)  =((iπ)/(2x)) e^(−x)   ⇒I_2 (x)=(1/2) Im(A(x))=(1/2) (π/(2x)) e^(−x)  ⇒  I_2 (x) =(π/(4x)) e^(−x)    with x>0  and if x<0  I_2 (x)=−(π/(4x)) e^x    .
erroratthefinallinewehaveA(x)=1x2+φ(z)dz=1x2iπ2xex=iπ2xexI2(x)=12Im(A(x))=12π2xexI2(x)=π4xexwithx>0andifx<0I2(x)=π4xex.

Leave a Reply

Your email address will not be published. Required fields are marked *