Question Number 36187 by prof Abdo imad last updated on 30/May/18
$${let}\:{I}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{sin}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{{n}} }{dt}\: \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{1}} \:\:{and}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{2}} \left({x}\right)\:{and}\:{I}_{\mathrm{3}} \left({x}\right)\: \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tsin}\left({t}\right)}{\left(\mathrm{2}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$
Commented by maxmathsup by imad last updated on 15/Aug/18
$$\left.\mathrm{3}\right)\:\:{let}\:\:{A}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{sint}}{\left(\mathrm{2}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:\:{changement}\:{t}\:=\sqrt{\mathrm{2}}{x}\:{give} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\sqrt{\mathrm{2}}{xsin}\left(\sqrt{\mathrm{2}}{x}\right)}{\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\sqrt{\mathrm{2}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left({x}\sqrt{\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}\:{sin}\left({x}\sqrt{\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\mathrm{4}{A}\:=\:{Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}\:{e}^{{ix}\sqrt{\mathrm{2}}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\right)\:{let}\:{considere}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\varphi\left({z}\right)\:=\:\:\frac{{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i} \\ $$$$\left({doubles}\right)\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:\:{but} \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!\:}\:\:\left\{\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\left\{\:\:\frac{{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \:={lim}_{{z}\rightarrow{i}} \:\:\frac{\left({e}^{{iz}\sqrt{\mathrm{2}}} \:+{i}\sqrt{\mathrm{2}}{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} \right)\left({z}+{i}\right)^{\mathrm{2}} −\mathrm{2}\left({z}+{i}\right){ze}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\left({z}+{i}\right)\:\left({e}^{{iz}\sqrt{\mathrm{2}}} +{i}\sqrt{\mathrm{2}}{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} \right)−\mathrm{2}\:{z}\:{e}^{{iz}\sqrt{\mathrm{2}}} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left(\mathrm{2}{i}\right)\left(\:{e}^{−\sqrt{\mathrm{2}}} \:−\sqrt{\mathrm{2}}{e}^{−\sqrt{\mathrm{2}}} \right)−\mathrm{2}{i}\:{e}^{−\sqrt{\mathrm{2}}} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} } \\ $$$$\frac{−\mathrm{2}\sqrt{\mathrm{2}}{i}\:{e}^{−\sqrt{\mathrm{2}}} }{−\mathrm{8}{i}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:{e}^{−\sqrt{\mathrm{2}}} \:\:\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:{e}^{−\sqrt{\mathrm{2}}} \:\:=\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\sqrt{\mathrm{2}}} \\ $$$$\mathrm{4}{A}\:={Im}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:\right)\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\sqrt{\mathrm{2}}} \:\Rightarrow\:{A}\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\:{e}^{−\sqrt{\mathrm{2}}} \:\:. \\ $$
Commented by maxmathsup by imad last updated on 19/Aug/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{I}_{\mathrm{2}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}\:{sint}}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{tsint}}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}_{\mathrm{2}} \left({x}\right)\:={Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}\:{e}^{{it}} }{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\right)={Im}\left({A}\left({x}\right)\right)\:\:{changement}\:{t}={xu}\:{give} \\ $$$${A}\left({x}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{xu}\:{e}^{{ixu}} }{{x}^{\mathrm{4}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{x}\:{du}\:\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{u}\:{e}^{{ixu}} }{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{du}\:\left({we}\:{suppose}\:{x}>\mathrm{0}\right) \\ $$$${let}\:{consider}\:{the}\:{complex}\:{function}\:\varphi\left({z}\right)\:=\frac{{z}\:{e}^{{ixz}} }{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)\:=\frac{{z}\:{e}^{{ixz}} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\left({doubles}\right)\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:\:{but} \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}!\right.}\:\left\{\:\:\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\left\{\:\frac{{z}\:{e}^{{ixz}} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} ={lim}_{{z}\rightarrow{i}} \:\:\frac{\left({e}^{{ixz}} \:\:+{ixz}\:{e}^{{ixz}} \right)\left({z}+{i}\right)^{\mathrm{2}} \:−\mathrm{2}\left({z}+{i}\right){z}\:{e}^{{ixz}} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\left(\mathrm{1}+{ixz}\right){e}^{{ixz}} \left({z}+{i}\right)−\mathrm{2}{z}\:{e}^{{ixz}} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left(\mathrm{1}−{x}\right){e}^{−{x}} \left(\mathrm{2}{i}\right)−\mathrm{2}{i}\:{e}^{−{x}} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }\:\:=\:\frac{\mathrm{2}{i}\left(\mathrm{1}−{x}\right){e}^{−{x}} \:−\mathrm{2}{i}\:{e}^{−{x}} }{−\mathrm{8}{i}} \\ $$$$=\frac{\left(\mathrm{2}−\mathrm{2}{x}−\mathrm{2}\right){e}^{−{x}} }{−\mathrm{8}}\:=\:\frac{{x}\:{e}^{−{x}} }{\mathrm{4}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{x}\:{e}^{−{x}} }{\mathrm{4}}\:=\frac{{i}\pi}{\mathrm{2}}\:{x}\:{e}^{−{x}} \:\Rightarrow \\ $$$$\mathrm{2}{I}_{\mathrm{2}} \left({x}\right)\:=\:\frac{\pi{x}}{\mathrm{2}}\:{e}^{−{x}} \:\Rightarrow\:{I}_{\mathrm{2}} \left({x}\right)\:=\frac{\pi{x}}{\mathrm{4}}\:{e}^{−{x}} \:\:. \\ $$$${if}\:\:{x}<\mathrm{0}\:\:{x}\:=−\alpha\:\:{with}\:\alpha>\mathrm{0}\:\Rightarrow{I}_{\mathrm{2}} \left({x}\right)={I}_{\mathrm{2}} \left(−\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tsint}}{\left({t}^{\mathrm{2}} \:+\alpha^{\mathrm{2}} \right)^{\mathrm{2}} }\:={I}_{\mathrm{2}} \left(\alpha\right) \\ $$$$=\frac{\pi\alpha}{\mathrm{4}}\:{e}^{−\alpha} \:\:=−\frac{\pi{x}}{\mathrm{4}}\:{e}^{{x}} \:. \\ $$
Commented by maxmathsup by imad last updated on 19/Aug/18
$${error}\:{at}\:{the}\:{final}\:{line}\:\:{we}\:{have}\:{A}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\: \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\frac{{i}\pi}{\mathrm{2}}\:{x}\:{e}^{−{x}} \:=\frac{{i}\pi}{\mathrm{2}{x}}\:{e}^{−{x}} \:\:\Rightarrow{I}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:{Im}\left({A}\left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\pi}{\mathrm{2}{x}}\:{e}^{−{x}} \:\Rightarrow \\ $$$${I}_{\mathrm{2}} \left({x}\right)\:=\frac{\pi}{\mathrm{4}{x}}\:{e}^{−{x}} \:\:\:{with}\:{x}>\mathrm{0}\:\:{and}\:{if}\:{x}<\mathrm{0} \\ $$$${I}_{\mathrm{2}} \left({x}\right)=−\frac{\pi}{\mathrm{4}{x}}\:{e}^{{x}} \:\:\:. \\ $$