Let-I-n-x-n-e-x-dx-n-0-1-2-i-Show-that-I-n-x-n-e-x-nI-n-1-ii-Show-that-0-x-n-e-x-dx-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 170532 by MikeH last updated on 26/May/22 LetIn=∫xne−xdx,n=0,1,2,…(i)ShowthatIn=−xne−x+nIn−1(ii)Showthat∫0∞xne−xdx=n! Answered by FelipeLz last updated on 26/May/22 (i)In=∫xne−xdxxn=u⇒u′=ddx[xn]=nxn−1e−x=v′⇒v=∫e−xdx=−e−x∫uv′dx=uv−∫u′vdxIn=xn(−e−x)−∫nxn−1(−e−x)dxIn=−xne−x+n∫xn−1e−xdxIn=−xne−x+nIn−1(ii)∫xne−xdx=−xne−x+n∫xn−1e−xdx∫xne−xdx=−xne−x−nxn−1e−x+n(n−1)∫xn−2e−xdx∫xne−xdx=−xne−x−nxn−1e−x−n(n−1)xn−2e−x+n(n−1)(n−2)∫xn−3e−xdx∫xne−xdx=−xne−x−nxn−1e−x−n(n−1)xn−2e−x−n(n−1)(n−2)xn−3e−x+n(n−1)(n−2)(n−3)∫xn−4e−xdx⋮∫xne−xdx=−e−x∑nk=0n!(n−k)!xn−k∫0∞xne−xdx=−∑nk=0[n!(n−k)!⋅limx→∞(xn−kex)]+∑n−1k=0[n!(n−k)!⋅0n−ke0]+n!e0∫0∞xne−xdx=−∑nk=0[n!(n−k)!⋅0]+∑n−1k=0[n!(n−k)!⋅0]+n!1=n! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-104997Next Next post: Question-104998 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.