Question Number 170532 by MikeH last updated on 26/May/22
$$\mathrm{Let}\:{I}_{{n}} \:=\int{x}^{{n}} {e}^{−{x}} {dx},\:{n}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},… \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Show}\:\mathrm{that}\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{nI}_{{n}−\mathrm{1}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:{n}! \\ $$
Answered by FelipeLz last updated on 26/May/22
$$\left({i}\right) \\ $$$$\:\:\:\:\:\:\:{I}_{{n}} \:=\:\int{x}^{{n}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{n}} \:=\:{u}\:\Rightarrow\:{u}'\:=\:\frac{{d}}{{dx}}\left[{x}^{{n}} \right]\:=\:{nx}^{{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{−{x}} \:=\:{v}^{'} \:\Rightarrow\:{v}\:=\:\int{e}^{−{x}} {dx}\:=\:−{e}^{−{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int{uv}'{dx}\:=\:{uv}−\int{u}'{vdx} \\ $$$$\:\:\:\:\:\:\:{I}_{{n}} \:=\:{x}^{{n}} \left(−{e}^{−{x}} \right)−\int{nx}^{{n}−\mathrm{1}} \left(−{e}^{−{x}} \right){dx} \\ $$$$\:\:\:\:\:\:\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{n}\int{x}^{{n}−\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{nI}_{{n}−\mathrm{1}} \\ $$$$\left({ii}\right) \\ $$$$\:\:\:\:\:\:\int{x}^{{n}} {e}^{−{x}} {dx}\:=\:−{x}^{{n}} {e}^{−{x}} +{n}\int{x}^{{n}−\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\int{x}^{{n}} {e}^{−{x}} {dx}\:=\:−{x}^{{n}} {e}^{−{x}} −{nx}^{{n}−\mathrm{1}} {e}^{−{x}} +{n}\left({n}−\mathrm{1}\right)\int{x}^{{n}−\mathrm{2}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\int{x}^{{n}} {e}^{−{x}} {dx}\:=\:−{x}^{{n}} {e}^{−{x}} −{nx}^{{n}−\mathrm{1}} {e}^{−{x}} −{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} {e}^{−{x}} +{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\int{x}^{{n}−\mathrm{3}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\int{x}^{{n}} {e}^{−{x}} {dx}\:=\:−{x}^{{n}} {e}^{−{x}} −{nx}^{{n}−\mathrm{1}} {e}^{−{x}} −{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} {e}^{−{x}} −{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right){x}^{{n}−\mathrm{3}} {e}^{−{x}} +{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)\int{x}^{{n}−\mathrm{4}} {e}^{−{x}} {dx} \\ $$$$\:\:\:\:\:\:\vdots \\ $$$$\:\:\:\:\:\:\int{x}^{{n}} {e}^{−{x}} {dx}\:=\:−{e}^{−{x}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{\left({n}−{k}\right)!}{x}^{{n}−{k}} \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\frac{{n}!}{\left({n}−{k}\right)!}\centerdot\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{x}^{{n}−{k}} }{{e}^{{x}} }\right)\right]+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left[\frac{{n}!}{\left({n}−{k}\right)!}\centerdot\frac{\mathrm{0}^{{n}−{k}} }{{e}^{\mathrm{0}} }\right]+\frac{{n}!}{{e}^{\mathrm{0}} }\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\frac{{n}!}{\left({n}−{k}\right)!}\centerdot\mathrm{0}\right]+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left[\frac{{n}!}{\left({n}−{k}\right)!}\centerdot\mathrm{0}\right]+\frac{{n}!}{\mathrm{1}}\:=\:{n}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$