Menu Close

Let-I-n-x-n-e-x-dx-n-0-1-2-i-Show-that-I-n-x-n-e-x-nI-n-1-ii-Show-that-0-x-n-e-x-dx-n-




Question Number 170532 by MikeH last updated on 26/May/22
Let I_n  =∫x^n e^(−x) dx, n = 0,1,2,...  (i) Show that I_n  = −x^n e^(−x) +nI_(n−1)   (ii) Show that ∫_0 ^∞ x^n e^(−x) dx = n!
LetIn=xnexdx,n=0,1,2,(i)ShowthatIn=xnex+nIn1(ii)Showthat0xnexdx=n!
Answered by FelipeLz last updated on 26/May/22
(i)         I_n  = ∫x^n e^(−x) dx               x^n  = u ⇒ u′ = (d/dx)[x^n ] = nx^(n−1)                e^(−x)  = v^′  ⇒ v = ∫e^(−x) dx = −e^(−x)                ∫uv′dx = uv−∫u′vdx         I_n  = x^n (−e^(−x) )−∫nx^(n−1) (−e^(−x) )dx         I_n  = −x^n e^(−x) +n∫x^(n−1) e^(−x) dx         I_n  = −x^n e^(−x) +nI_(n−1)   (ii)        ∫x^n e^(−x) dx = −x^n e^(−x) +n∫x^(n−1) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) +n(n−1)∫x^(n−2) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) −n(n−1)x^(n−2) e^(−x) +n(n−1)(n−2)∫x^(n−3) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) −n(n−1)x^(n−2) e^(−x) −n(n−1)(n−2)x^(n−3) e^(−x) +n(n−1)(n−2)(n−3)∫x^(n−4) e^(−x) dx        ⋮        ∫x^n e^(−x) dx = −e^(−x) Σ_(k=0) ^n ((n!)/((n−k)!))x^(n−k)         ∫_0 ^∞ x^n e^(−x) dx = −Σ_(k=0) ^n [((n!)/((n−k)!))∙lim_(x→∞) ((x^(n−k) /e^x ))]+Σ_(k=0) ^(n−1) [((n!)/((n−k)!))∙(0^(n−k) /e^0 )]+((n!)/e^0 )         ∫_0 ^∞ x^n e^(−x) dx = −Σ_(k=0) ^n [((n!)/((n−k)!))∙0]+Σ_(k=0) ^(n−1) [((n!)/((n−k)!))∙0]+((n!)/1) = n!
(i)In=xnexdxxn=uu=ddx[xn]=nxn1ex=vv=exdx=exuvdx=uvuvdxIn=xn(ex)nxn1(ex)dxIn=xnex+nxn1exdxIn=xnex+nIn1(ii)xnexdx=xnex+nxn1exdxxnexdx=xnexnxn1ex+n(n1)xn2exdxxnexdx=xnexnxn1exn(n1)xn2ex+n(n1)(n2)xn3exdxxnexdx=xnexnxn1exn(n1)xn2exn(n1)(n2)xn3ex+n(n1)(n2)(n3)xn4exdxxnexdx=exnk=0n!(nk)!xnk0xnexdx=nk=0[n!(nk)!limx(xnkex)]+n1k=0[n!(nk)!0nke0]+n!e00xnexdx=nk=0[n!(nk)!0]+n1k=0[n!(nk)!0]+n!1=n!

Leave a Reply

Your email address will not be published. Required fields are marked *