let-I-t-1-t-2-t-1-2-dt-find-value-of-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53113 by maxmathsup by imad last updated on 17/Jan/19 letI=∫−∞+∞t+1(t2−t+1)2dtfindvalueofI. Commented by maxmathsup by imad last updated on 18/Jan/19 wehavet2−t+1=(t−12)2+34sochangementt−12=32xgiveI=∫−∞+∞12+32x+1(34)2(x2+1)232dx=16934∫−∞+∞3+3x(x2+1)2dx=439∫−∞+∞3+3x(x2+1)2dxletφ(z)=3+3z(z2+1)2wehaveφ(z)=3+3z(z−i)2(z+i)2sotheplesofφare+−i(doubles)andresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{3+3z(z+i)2}(1)=limz→i3(z+i)2−2(z+i)(3+3z)(z+i)4=limz→i3(z+i)−2(3+3z)(z+i)3=23i−2(3+3i)−8i=−6−8i=34i⇒∫−∞+∞φ(z)dz=2iπ34i=3π2⇒I=4393π2=2π33. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-pi-1-2sinx-3-2cosx-dx-let-A-0-pi-1-2sinx-3-2cosx-dx-changement-tan-x-2-t-give-A-0-1-4t-1-t-2-3-2-1-t-2-1-t-2-2dt-1-t-2-2-0-Next Next post: Differentiate-y-e-x-x-x-M-m- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.