Menu Close

let-I-t-1-t-2-t-1-2-dt-find-value-of-I-




Question Number 53113 by maxmathsup by imad last updated on 17/Jan/19
let I =∫_(−∞) ^(+∞)    ((t+1)/((t^2 −t+1)^2 ))dt  find value of I .
letI=+t+1(t2t+1)2dtfindvalueofI.
Commented by maxmathsup by imad last updated on 18/Jan/19
we have t^2 −t+1 =(t−(1/2))^2 +(3/4)  so changement t−(1/2) =((√3)/2) x give  I =∫_(−∞) ^(+∞)   (((1/2)+((√3)/2)x +1)/(((3/4))^2 (x^2  +1)^2 )) ((√3)/2) dx =((16)/9) ((√3)/4) ∫_(−∞) ^(+∞)    ((3+(√3)x)/((x^2  +1)^2 ))dx  =((4(√3))/9) ∫_(−∞) ^(+∞)   ((3+(√3)x)/((x^2  +1)^2 ))dx  let ϕ(z) =((3 +(√3)z)/((z^2  +1)^2 ))  we have   ϕ(z) =((3+(√3)z)/((z−i)^2 (z+i)^2 ))  so the ples of ϕ are +^− i(doubles) and residus theorem  give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)  (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1)) =lim_(z→i) { ((3+(√3)z)/((z+i)^2 ))}^((1))   =lim_(z→i) (((√3)(z+i)^2 −2(z+i)(3+(√3)z))/((z+i)^4 ))  =lim_(z→i)    (((√3)(z+i)−2(3+(√3)z))/((z+i)^3 )) =((2(√3)i−2(3+(√3)i))/(−8i)) =((−6)/(−8i)) =(3/(4i)) ⇒  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (3/(4i)) =((3π)/2) ⇒ I =((4(√3))/9) ((3π)/2) =((2π(√3))/3) .
wehavet2t+1=(t12)2+34sochangementt12=32xgiveI=+12+32x+1(34)2(x2+1)232dx=16934+3+3x(x2+1)2dx=439+3+3x(x2+1)2dxletφ(z)=3+3z(z2+1)2wehaveφ(z)=3+3z(zi)2(z+i)2sotheplesofφare+i(doubles)andresidustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{3+3z(z+i)2}(1)=limzi3(z+i)22(z+i)(3+3z)(z+i)4=limzi3(z+i)2(3+3z)(z+i)3=23i2(3+3i)8i=68i=34i+φ(z)dz=2iπ34i=3π2I=4393π2=2π33.

Leave a Reply

Your email address will not be published. Required fields are marked *