Menu Close

let-j-e-i-2pi-3-find-the-value-of-k-0-n-C-n-k-1-j-k-j-2n-2k-




Question Number 30519 by abdo imad last updated on 22/Feb/18
let j=e^(i((2π)/3))     find the value of Σ_(k=0) ^n C_n ^k (1+j)^k j^(2n−2k)  .
$${let}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:\:{find}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \left(\mathrm{1}+{j}\right)^{{k}} {j}^{\mathrm{2}{n}−\mathrm{2}{k}} \:. \\ $$
Answered by sma3l2996 last updated on 23/Feb/18
Σ_(k=0) ^n C_n ^k (1+j)^k j^(2n−2k) =Σ_(k=0) ^n C_n ^k (1+j)^k j^(2(n−k))   =Σ_(k=0) ^n C_n ^k (1+j)^k (j^2 )^(n−k) =(1+j+j^2 )^n =0  because (j^2 +j+1=0)
$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(\mathrm{1}+{j}\right)^{{k}} {j}^{\mathrm{2}{n}−\mathrm{2}{k}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(\mathrm{1}+{j}\right)^{{k}} {j}^{\mathrm{2}\left({n}−{k}\right)} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(\mathrm{1}+{j}\right)^{{k}} \left({j}^{\mathrm{2}} \right)^{{n}−{k}} =\left(\mathrm{1}+{j}+{j}^{\mathrm{2}} \right)^{{n}} =\mathrm{0}\:\:{because}\:\left({j}^{\mathrm{2}} +{j}+\mathrm{1}=\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *