Menu Close

let-j-e-i2pi-3-and-P-x-1-jx-n-1-jx-n-1-find-P-x-at-form-of-arctan-2-find-the-roots-of-P-x-3-factorize-inside-C-x-the-polynome-P-x-4-calculate-0-1-P-x-dx-




Question Number 62225 by maxmathsup by imad last updated on 17/Jun/19
let j =e^((i2π)/3)    and P(x) =(1+jx)^n −(1−jx)^n   1) find P(x) at form of arctan  2) find the roots of P(x)  3)factorize inside C[x]  the polynome P(x)  4) calculate ∫_0 ^1  P(x)dx
letj=ei2π3andP(x)=(1+jx)n(1jx)n1)findP(x)atformofarctan2)findtherootsofP(x)3)factorizeinsideC[x]thepolynomeP(x)4)calculate01P(x)dx
Commented by mathmax by abdo last updated on 24/Jun/19
1) we have j =cos(((2π)/3))+isin(((2π)/3)) =−(1/2)+i((√3)/2) ⇒  P(x)=(1+(−(1/2)+i((√3)/2))x)^n  −(1−(−(1/2) +i((√3)/2))x)^n   =(1−(x/2) +i((√3)/2)x)^n  −(1+(x/2)−i((√3)/2)x)^n  =A^n (x)−B^n (x)  ∣A(x)∣ =(√((1−(x/2))^2  +(3/4)x^2 )) =(√(((2−x)^2  +3x^2 )/4))=(1/2)(√((x−2)^2  +3x^2 ))  we know that x+iy =(√(x^2  +y^2  )) e^(i arctan((y/x)))  ⇒  A(x) =(1/2)(√((x−2)^2  +3x^2 )) e^(i arctan((((√3)x)/(2−x))))  ⇒A^n (x) =(1/2^n ){(x−2)^2  +3x^2 }^(n/2)  e^(i n arctan((((√3)x)/(2−x))))   ∣B(x)∣ =(1/2)(√((x+2)^2  +3x^2  )) ⇒B(x) =(1/2)(√((x+2)^2  +3x^2  ))e^(i arctan(((−(√3)x)/(2+x))))  ⇒  B^n (x) =(1/2^n ){ (x+2)^2  +3x^2 }^(n/2)  e^(−in arctan((((√3)x)/(2+x))))  ⇒  P(x) =(1/2^n ){ (x−2)^2  +3x^2 }^(n/2)  e^(in arctan((((√3)x)/(2−x)))) −(1/2^n ){(x+2)^2  +3x^2 }^(n/2)  e^(−in arctan((((√3)x)/(2+x))))   and we see that  B(x) =A(−x).
1)wehavej=cos(2π3)+isin(2π3)=12+i32P(x)=(1+(12+i32)x)n(1(12+i32)x)n=(1x2+i32x)n(1+x2i32x)n=An(x)Bn(x)A(x)=(1x2)2+34x2=(2x)2+3x24=12(x2)2+3x2weknowthatx+iy=x2+y2eiarctan(yx)A(x)=12(x2)2+3x2eiarctan(3x2x)An(x)=12n{(x2)2+3x2}n2einarctan(3x2x)B(x)=12(x+2)2+3x2B(x)=12(x+2)2+3x2eiarctan(3x2+x)Bn(x)=12n{(x+2)2+3x2}n2einarctan(3x2+x)P(x)=12n{(x2)2+3x2}n2einarctan(3x2x)12n{(x+2)2+3x2}n2einarctan(3x2+x)andweseethatB(x)=A(x).
Commented by mathmax by abdo last updated on 24/Jun/19
2) P(x)=0 ⇔(1+jx)^n  =(1−jx)^n  ⇒(((1+jx)/(1−jx)))^n  =1 ⇒Z^n  =1  with Z =((1+jx)/(1−jx))   the roots of Z^n  =1 are Z_k =e^(i((2kπ)/n))   with k∈[[0,n−1]]  Z =((1+jx)/(1−jx)) ⇒Z−jZx =1+jx ⇒Z−1 =jx(1+Z) ⇒x =((Z−1)/(j(1+Z))) so the roots  of P(x)=0 are x_k =−(1/j) ((1−Zk)/(1+Z_k ))  =−(1/j) ((1−cos(((2kπ)/n))−i sin(((2kπ)/n)))/(1+cos(((2kπ)/n))+i sin(((2kπ)/n)))) =−(1/j)((2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2i cos(((kπ)/n))sin(((kπ)/n))))  =−(1/j) ((−i sin(((kπ)/n)) e^(i((kπ)/n)) )/(cos(((kπ)/n))e^((ikπ)/n) )) =(i/j)tan(((kπ)/n))   ⇒ x_k =(i/j) tan(((kπ)/n)) and k ∈[[0,n−1]].
2)P(x)=0(1+jx)n=(1jx)n(1+jx1jx)n=1Zn=1withZ=1+jx1jxtherootsofZn=1areZk=ei2kπnwithk[[0,n1]]Z=1+jx1jxZjZx=1+jxZ1=jx(1+Z)x=Z1j(1+Z)sotherootsofP(x)=0arexk=1j1Zk1+Zk=1j1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=1j2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2icos(kπn)sin(kπn)=1jisin(kπn)eikπncos(kπn)eikπn=ijtan(kπn)xk=ijtan(kπn)andk[[0,n1]].
Commented by mathmax by abdo last updated on 24/Jun/19
3) P(x) =λ Π_(k=0) ^(n−1) (x−(i/j)tan(((kπ)/n)))   with λ is the dominent coefficientof P(x).
3)P(x)=λk=0n1(xijtan(kπn))withλisthedominentcoefficientofP(x).
Commented by mathmax by abdo last updated on 24/Jun/19
4) we have P(x) =Σ_(k=0) ^n  C_n ^k j^k  x^k   −Σ_(k=0) ^n  C_n ^k  (−j)^k  x^k   =Σ_(k=0) ^n  C_n ^k  (j^k  −(−j)^k )x^k     but  j^k  −(−j)^k  =e^(i((2kπ)/3))  −(−e^(i((2π)/3)) )^k   ={1−(−1)^k } e^(i((2kπ)/3))  =0 if  k=2p  and  =2 e^(i((2(2p+1)π)/3))  if k =2p+1 ⇒  P(x) =Σ_(p=0) ^([((n−1)/2)])  2 C_n ^(2p+1)  e^(i((2(2p+1)π)/3))   x^(2p+1)  ⇒  ∫_0 ^1  P(x)dx =2Σ_(p=0) ^([((n−1)/2)])    C_n ^(2p+1)     e^(i((4p+2)/3)π)  (1/(2p+2))  =Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)    (e^(i((4p+2)/3)π) /(p+1)) .
4)wehaveP(x)=k=0nCnkjkxkk=0nCnk(j)kxk=k=0nCnk(jk(j)k)xkbutjk(j)k=ei2kπ3(ei2π3)k={1(1)k}ei2kπ3=0ifk=2pand=2ei2(2p+1)π3ifk=2p+1P(x)=p=0[n12]2Cn2p+1ei2(2p+1)π3x2p+101P(x)dx=2p=0[n12]Cn2p+1ei4p+23π12p+2=p=0[n12]Cn2p+1ei4p+23πp+1.

Leave a Reply

Your email address will not be published. Required fields are marked *