Question Number 62225 by maxmathsup by imad last updated on 17/Jun/19
![let j =e^((i2π)/3) and P(x) =(1+jx)^n −(1−jx)^n 1) find P(x) at form of arctan 2) find the roots of P(x) 3)factorize inside C[x] the polynome P(x) 4) calculate ∫_0 ^1 P(x)dx](https://www.tinkutara.com/question/Q62225.png)
Commented by mathmax by abdo last updated on 24/Jun/19

Commented by mathmax by abdo last updated on 24/Jun/19
![2) P(x)=0 ⇔(1+jx)^n =(1−jx)^n ⇒(((1+jx)/(1−jx)))^n =1 ⇒Z^n =1 with Z =((1+jx)/(1−jx)) the roots of Z^n =1 are Z_k =e^(i((2kπ)/n)) with k∈[[0,n−1]] Z =((1+jx)/(1−jx)) ⇒Z−jZx =1+jx ⇒Z−1 =jx(1+Z) ⇒x =((Z−1)/(j(1+Z))) so the roots of P(x)=0 are x_k =−(1/j) ((1−Zk)/(1+Z_k )) =−(1/j) ((1−cos(((2kπ)/n))−i sin(((2kπ)/n)))/(1+cos(((2kπ)/n))+i sin(((2kπ)/n)))) =−(1/j)((2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2i cos(((kπ)/n))sin(((kπ)/n)))) =−(1/j) ((−i sin(((kπ)/n)) e^(i((kπ)/n)) )/(cos(((kπ)/n))e^((ikπ)/n) )) =(i/j)tan(((kπ)/n)) ⇒ x_k =(i/j) tan(((kπ)/n)) and k ∈[[0,n−1]].](https://www.tinkutara.com/question/Q62723.png)
Commented by mathmax by abdo last updated on 24/Jun/19

Commented by mathmax by abdo last updated on 24/Jun/19
![4) we have P(x) =Σ_(k=0) ^n C_n ^k j^k x^k −Σ_(k=0) ^n C_n ^k (−j)^k x^k =Σ_(k=0) ^n C_n ^k (j^k −(−j)^k )x^k but j^k −(−j)^k =e^(i((2kπ)/3)) −(−e^(i((2π)/3)) )^k ={1−(−1)^k } e^(i((2kπ)/3)) =0 if k=2p and =2 e^(i((2(2p+1)π)/3)) if k =2p+1 ⇒ P(x) =Σ_(p=0) ^([((n−1)/2)]) 2 C_n ^(2p+1) e^(i((2(2p+1)π)/3)) x^(2p+1) ⇒ ∫_0 ^1 P(x)dx =2Σ_(p=0) ^([((n−1)/2)]) C_n ^(2p+1) e^(i((4p+2)/3)π) (1/(2p+2)) =Σ_(p=0) ^([((n−1)/2)]) C_n ^(2p+1) (e^(i((4p+2)/3)π) /(p+1)) .](https://www.tinkutara.com/question/Q62725.png)