let-j-e-i2pi-3-and-p-x-1-xj-n-1-xj-n-1-find-the-roots-of-p-x-and-factorize-inside-C-x-p-x-2-decompose-inside-C-x-the-fration-F-x-1-p-x- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 42507 by maxmathsup by imad last updated on 26/Aug/18 letj=ei2π3andp(x)=(1+xj)n−(1−xj)n1)findtherootsofp(x)andfactorizeinsideC[x]p(x)2)decomposeinsideC(x)thefrationF(x)=1p(x). Commented by maxmathsup by imad last updated on 28/Aug/18 1)p(x)=0⇔(1+xj1−xj)n=1⇒1+xj1−xj=ei2kπnk∈[[0,n−1]]letzk=ei2kπn⇒1+xj1−xj=zk⇒1+jx=zk−jzkx⇒j(1+zk)x=zk−1⇒x=zk−1j(1+zk)=−1j1−zk1+zk⇒therootsarexk=−1j1−cos(2kπn)−isin(2kπn)1+cos(2kπn)+isin(2kπn)=−1j2sin2(kπn)−2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=ijsin(kπn)(cos(kπn)+isin(kπn))cos(kπn)(cos(kπn)+isin(kπn))=ijtan(kπn)⇒xk=ijtan(kπn)and0⩽k⩽n−1p(x)=λ∏k=0n−1(x−xk)=λ∏k=0n−1(x−ijtan(kπn))letfindλwehavep(x)=∑k=0nCnkjkxk−∑k=0n−1Cnk(−1)kjkxk=∑k=0nCnk{1−(−1)k}jkxk⇒λ=(1−(−1)n)jn⇒p(x)=(1−(−1)n)jn∏k=0n−1(x−ijtan(kπn)). Commented by maxmathsup by imad last updated on 28/Aug/18 2)wehavep(x)=λ∏k=0n−1(x−xk)withxk=ijtan(kπn)⇒F(x)=1p(x)=1λ∏k=0n−1(x−xk)=∑k=0n−1αkx−xk(thepolesaresimples)αk=1p′(xk)butp(x)=(1+jx)n−(1−jx)n⇒p′(x)=nj(1+jx)n−1+nj(1−jx)n−1⇒p′(xk)=nj(1+jxk)n−1+nj(1−jxk)n−1⇒αk=1nj{(1+jxk)n−1+(1−jxk)n−1}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-f-x-x-x-1-x-2-x-n-find-the-value-of-f-0-Next Next post: find-the-value-of-A-cos-pi-5-cos-2pi-5-cos-4pi-5-and-B-sin-pi-5-sin-2pi-5-sin-4pi-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.