Menu Close

let-j-e-i2pi-3-and-p-x-1-xj-n-1-xj-n-1-find-the-roots-of-p-x-and-factorize-inside-C-x-p-x-2-decompose-inside-C-x-the-fration-F-x-1-p-x-




Question Number 42507 by maxmathsup by imad last updated on 26/Aug/18
let j =e^((i2π)/3)    and   p(x) =(1+xj)^n  −(1−xj)^n   1) find the roots of p(x) and factorize inside C[x] p(x)  2) decompose inside C(x) the fration F(x) =(1/(p(x))) .
letj=ei2π3andp(x)=(1+xj)n(1xj)n1)findtherootsofp(x)andfactorizeinsideC[x]p(x)2)decomposeinsideC(x)thefrationF(x)=1p(x).
Commented by maxmathsup by imad last updated on 28/Aug/18
1) p(x)=0 ⇔ (((1+xj)/(1−xj)))^n  =1   ⇒ ((1+xj)/(1−xj)) =e^((i2kπ)/n)        k∈[[0,n−1]]  let z_k =e^((i2kπ)/n)  ⇒  ((1+xj)/(1−xj)) =z_k ⇒1+jx = z_k  −jz_k x ⇒j(1+z_k )x = z_k −1 ⇒x =((z_k −1)/(j(1+z_k )))  =−(1/j) ((1−z_k )/(1+z_k )) ⇒ the roots are x_k =−(1/j) ((1−cos(((2kπ)/n))−isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =−(1/j) ((2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2i sin(((kπ)/n))cos(((kπ)/n)))) =(i/j) ((sin(((kπ)/n))(cos(((kπ)/n)) +isin(((kπ)/n))))/(cos(((kπ)/n))(cos(((kπ)/n))+isin(((kπ)/n)))))  =(i/j)tan(((kπ)/n)) ⇒ x_k  =(i/j) tan(((kπ)/n)) and  0≤k≤n−1  p(x) =λ Π_(k=0) ^(n−1) (x−x_k ) =λ Π_(k=0) ^(n−1) (x−(i/j)tan(((kπ)/n)))  let findλ  we have  p(x) =Σ_(k=0) ^n   C_n ^k j^k  x^k  −Σ_(k=0) ^(n−1)   C_n ^k (−1)^k j^k x^k   =Σ_(k=0) ^n   C_n ^k {1−(−1)^k }j^k  x^k  ⇒λ  = (1−(−1)^n )j^n  ⇒  p(x) =(1−(−1)^n )j^n  Π_(k=0) ^(n−1) (x−(i/j)tan(((kπ)/n))) .
1)p(x)=0(1+xj1xj)n=11+xj1xj=ei2kπnk[[0,n1]]letzk=ei2kπn1+xj1xj=zk1+jx=zkjzkxj(1+zk)x=zk1x=zk1j(1+zk)=1j1zk1+zktherootsarexk=1j1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=1j2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=ijsin(kπn)(cos(kπn)+isin(kπn))cos(kπn)(cos(kπn)+isin(kπn))=ijtan(kπn)xk=ijtan(kπn)and0kn1p(x)=λk=0n1(xxk)=λk=0n1(xijtan(kπn))letfindλwehavep(x)=k=0nCnkjkxkk=0n1Cnk(1)kjkxk=k=0nCnk{1(1)k}jkxkλ=(1(1)n)jnp(x)=(1(1)n)jnk=0n1(xijtan(kπn)).
Commented by maxmathsup by imad last updated on 28/Aug/18
2) we have  p(x) =λ Π_(k=0) ^(n−1)  (x−x_k )   with x_k =(i/j) tan(((kπ)/n)) ⇒  F(x)=(1/(p(x))) = (1/(λ Π_(k=0) ^(n−1) (x−x_k ))) = Σ_(k=0) ^(n−1)    (α_k /(x−x_k ))     (the poles are simples)  α_k =(1/(p^′ (x_k )))  but  p(x) =(1+jx)^n −(1−jx)^n  ⇒p^′ (x)=nj(1+jx)^(n−1)  +nj(1−jx)^(n−1)   ⇒p^′ (x_k ) =nj(1 +jx_k )^(n−1)  +nj(1−jx_k )^(n−1)  ⇒  α_k   =(1/(nj{ (1+jx_k )^(n−1)  +(1−jx_k )^(n−1) })) .
2)wehavep(x)=λk=0n1(xxk)withxk=ijtan(kπn)F(x)=1p(x)=1λk=0n1(xxk)=k=0n1αkxxk(thepolesaresimples)αk=1p(xk)butp(x)=(1+jx)n(1jx)np(x)=nj(1+jx)n1+nj(1jx)n1p(xk)=nj(1+jxk)n1+nj(1jxk)n1αk=1nj{(1+jxk)n1+(1jxk)n1}.

Leave a Reply

Your email address will not be published. Required fields are marked *