Menu Close

let-J-x-0-x-t-2-t-1-t-4-dt-find-a-explicit-form-of-J-x-




Question Number 57420 by Abdo msup. last updated on 03/Apr/19
let J(x)=∫_0 ^x     (t^2 /( (√(t+1)) +(√(t+4))))dt  find a explicit form of J(x)
letJ(x)=0xt2t+1+t+4dtfindaexplicitformofJ(x)
Commented by maxmathsup by imad last updated on 05/Apr/19
we have J(x)=∫_0 ^x  ((t^2 ((√(t+4))−(√(t+1))))/(t+4−t−1)) dt =(1/3) ∫_0 ^x t^2 (√(t+4))dt −(1/3) ∫_0 ^x t^2 (√(t+1))dt  changement (√(t+4))=u give t+4 =u^2  ⇒∫_0 ^x t^2 (√(t+4))dt =∫_2^  ^(√(x+4)) (u^2 −4)^2 u (2u)du  =2 ∫_2 ^(√(x+4)) u^2 (u^4 −8u^2  +16)du =2 ∫_2 ^(√(x+4)) (u^6 −8u^4  +16u^2 )du  =2 [(u^7 /7) −(8/5)u^5  +((16)/3)u^3 ]_2 ^(√(x+4)) =2{(1/7)(x+4)^(7/2)  −(8/5)(x+4)^(5/2)  +((16)/3)(x+4)^(3/2)   −(2^7 /7)+(8/5) 2^5  −((16)/3) 2^3 }   also changement (√(t+1))=u give t+1 =u^2  ⇒  ∫_0 ^x t^2 (√(t+1))dt = ∫_1 ^(√(x+1)) (u^2 −1)^2 u (2u)du =2 ∫_1 ^(√(x+1)) u^2 (u^4 −2u^2  +1)du  =2 ∫_1 ^(√(x+1)) (u^6  −2u^4  +u^2 )du =2[ (u^7 /7) −(2/5)u^5  +(u^3 /3)]_1 ^(√(x+1))   =2{(1/7)(x+1)^(7/2)  −(2/5)(x+1)^(5/2)  +(1/3)(x+1)^(3/2) −(1/7) +(2/5) −(1/3)}  the value of J(x)is determined..
wehaveJ(x)=0xt2(t+4t+1)t+4t1dt=130xt2t+4dt130xt2t+1dtchangementt+4=ugivet+4=u20xt2t+4dt=2x+4(u24)2u(2u)du=22x+4u2(u48u2+16)du=22x+4(u68u4+16u2)du=2[u7785u5+163u3]2x+4=2{17(x+4)7285(x+4)52+163(x+4)32277+852516323}alsochangementt+1=ugivet+1=u20xt2t+1dt=1x+1(u21)2u(2u)du=21x+1u2(u42u2+1)du=21x+1(u62u4+u2)du=2[u7725u5+u33]1x+1=2{17(x+1)7225(x+1)52+13(x+1)3217+2513}thevalueofJ(x)isdetermined..

Leave a Reply

Your email address will not be published. Required fields are marked *