Question Number 57420 by Abdo msup. last updated on 03/Apr/19
$${let}\:{J}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\:\sqrt{{t}+\mathrm{1}}\:+\sqrt{{t}+\mathrm{4}}}{dt} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{J}\left({x}\right) \\ $$
Commented by maxmathsup by imad last updated on 05/Apr/19
$${we}\:{have}\:{J}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{t}^{\mathrm{2}} \left(\sqrt{{t}+\mathrm{4}}−\sqrt{{t}+\mathrm{1}}\right)}{{t}+\mathrm{4}−{t}−\mathrm{1}}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{{x}} {t}^{\mathrm{2}} \sqrt{{t}+\mathrm{4}}{dt}\:−\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{{x}} {t}^{\mathrm{2}} \sqrt{{t}+\mathrm{1}}{dt} \\ $$$${changement}\:\sqrt{{t}+\mathrm{4}}={u}\:{give}\:{t}+\mathrm{4}\:={u}^{\mathrm{2}} \:\Rightarrow\int_{\mathrm{0}} ^{{x}} {t}^{\mathrm{2}} \sqrt{{t}+\mathrm{4}}{dt}\:=\int_{\mathrm{2}^{} } ^{\sqrt{{x}+\mathrm{4}}} \left({u}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{2}} {u}\:\left(\mathrm{2}{u}\right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{2}} ^{\sqrt{{x}+\mathrm{4}}} {u}^{\mathrm{2}} \left({u}^{\mathrm{4}} −\mathrm{8}{u}^{\mathrm{2}} \:+\mathrm{16}\right){du}\:=\mathrm{2}\:\int_{\mathrm{2}} ^{\sqrt{{x}+\mathrm{4}}} \left({u}^{\mathrm{6}} −\mathrm{8}{u}^{\mathrm{4}} \:+\mathrm{16}{u}^{\mathrm{2}} \right){du} \\ $$$$=\mathrm{2}\:\left[\frac{{u}^{\mathrm{7}} }{\mathrm{7}}\:−\frac{\mathrm{8}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\frac{\mathrm{16}}{\mathrm{3}}{u}^{\mathrm{3}} \right]_{\mathrm{2}} ^{\sqrt{{x}+\mathrm{4}}} =\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{7}}\left({x}+\mathrm{4}\right)^{\frac{\mathrm{7}}{\mathrm{2}}} \:−\frac{\mathrm{8}}{\mathrm{5}}\left({x}+\mathrm{4}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:+\frac{\mathrm{16}}{\mathrm{3}}\left({x}+\mathrm{4}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right. \\ $$$$\left.−\frac{\mathrm{2}^{\mathrm{7}} }{\mathrm{7}}+\frac{\mathrm{8}}{\mathrm{5}}\:\mathrm{2}^{\mathrm{5}} \:−\frac{\mathrm{16}}{\mathrm{3}}\:\mathrm{2}^{\mathrm{3}} \right\}\:\:\:{also}\:{changement}\:\sqrt{{t}+\mathrm{1}}={u}\:{give}\:{t}+\mathrm{1}\:={u}^{\mathrm{2}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{{x}} {t}^{\mathrm{2}} \sqrt{{t}+\mathrm{1}}{dt}\:=\:\int_{\mathrm{1}} ^{\sqrt{{x}+\mathrm{1}}} \left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} {u}\:\left(\mathrm{2}{u}\right){du}\:=\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{x}+\mathrm{1}}} {u}^{\mathrm{2}} \left({u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}\right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{{x}+\mathrm{1}}} \left({u}^{\mathrm{6}} \:−\mathrm{2}{u}^{\mathrm{4}} \:+{u}^{\mathrm{2}} \right){du}\:=\mathrm{2}\left[\:\frac{{u}^{\mathrm{7}} }{\mathrm{7}}\:−\frac{\mathrm{2}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\frac{{u}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{1}} ^{\sqrt{{x}+\mathrm{1}}} \\ $$$$=\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{7}}\left({x}+\mathrm{1}\right)^{\frac{\mathrm{7}}{\mathrm{2}}} \:−\frac{\mathrm{2}}{\mathrm{5}}\left({x}+\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:+\frac{\mathrm{1}}{\mathrm{3}}\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{7}}\:+\frac{\mathrm{2}}{\mathrm{5}}\:−\frac{\mathrm{1}}{\mathrm{3}}\right\} \\ $$$${the}\:{value}\:{of}\:{J}\left({x}\right){is}\:{determined}.. \\ $$