Menu Close

Let-k-be-a-real-number-such-that-the-inequality-x-3-6-x-k-has-a-solution-then-the-maximum-value-of-k-is-




Question Number 21313 by Tinkutara last updated on 20/Sep/17
Let k be a real number such that the  inequality (√(x − 3)) + (√(6 − x)) ≥ k has a  solution then the maximum value of k  is
Letkbearealnumbersuchthattheinequalityx3+6xkhasasolutionthenthemaximumvalueofkis
Commented by mrW1 last updated on 20/Sep/17
k_(max) =(√6)
kmax=6
Commented by Tinkutara last updated on 21/Sep/17
How?
How?
Commented by Tinkutara last updated on 21/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by mrW1 last updated on 21/Sep/17
f(x)=(√(x−3))+(√(6−x))  3≤x≤6  f(3)=(√3)  f(6)=(√3)  f′(x)=(1/(2(√(x−3))))−(1/(2(√(6−x))))  f′(x)=0⇒(√(6−x))=(√(x−3))⇒x=(9/2)  f((9/2))=(√((9/2)−3))+(√(6−(9/2)))=(√6)>(√3)  f′′(x)=−(1/(4(x−3)(√(x−3))))−(1/(4(6−x)(√(6−x))))  f′′((9/2))=−(1/(4×(3/2)×(√(3/2))))−(1/(4×(3/2)×(√(3/2))))=−(2/(3(√6)))<0  ⇒f(x) has an absolute max. at x=(9/2)  which is (√6).  ⇒(√3)≤ f(x)=(√(x−3))+(√(6−x))≤(√6)    or f(x)≥k has a solution only if k≤(√6).
f(x)=x3+6x3x6f(3)=3f(6)=3f(x)=12x3126xf(x)=06x=x3x=92f(92)=923+692=6>3f(x)=14(x3)x314(6x)6xf(92)=14×32×3214×32×32=236<0f(x)hasanabsolutemax.atx=92whichis6.3f(x)=x3+6x6orf(x)khasasolutiononlyifk6.

Leave a Reply

Your email address will not be published. Required fields are marked *