Menu Close

Let-K-L-M-and-N-be-the-midpoints-of-the-sides-AB-BC-CD-and-DA-respectively-of-a-cyclic-quadrilateral-ABCD-Prove-that-the-orthocenters-of-the-triangles-AKN-BKL-CLM-and-DMN-are-the-vertices-of-




Question Number 16074 by Tinkutara last updated on 17/Jun/17
Let K, L, M and N be the midpoints of  the sides AB, BC, CD and DA,  respectively, of a cyclic quadrilateral  ABCD. Prove that the orthocenters  of the triangles AKN, BKL, CLM and  DMN are the vertices of a  parallelogram.
LetK,L,MandNbethemidpointsofthesidesAB,BC,CDandDA,respectively,ofacyclicquadrilateralABCD.ProvethattheorthocentersofthetrianglesAKN,BKL,CLMandDMNaretheverticesofaparallelogram.

Leave a Reply

Your email address will not be published. Required fields are marked *