Menu Close

let-L-n-x-e-x-e-x-x-n-n-1-prove-that-L-n-is-a-polynomial-2-find-degL-n-and-the-leading-coefficient-




Question Number 31500 by abdo imad last updated on 09/Mar/18
let L_n (x)= e^x  (e^(−x)  x^n )^((n))    1) prove that L_n  is a polynomial  2) find degL_(n ) and the leading coefficient .
letLn(x)=ex(exxn)(n)1)provethatLnisapolynomial2)finddegLnandtheleadingcoefficient.
Commented by abdo imad last updated on 13/Mar/18
we have by Leniz formulae   (e^(−x)  x^n )^((n))  =Σ_(k=0) ^n  C_n ^k   (x^n )^((k))  (e^(−x) )^((n−k))  but   (x^n )^((k)) =n(n−1)(n−2)...(n−k+1) x^(n−k)   =((n!)/((n−k)!)) x^(n−k)    and  (e^(−x) )^((n−k)) =(−1)^(n−k)  e^(−x)  ⇒  (e^(−x)  x^n )^((n))   = e^(−x) Σ_(k=0) ^n  (−1)^(n−k)  C_n ^k   ((n!)/((n−k)!)) x^(n−k)   ⇒  L_n (x)=(−1)^n  Σ_(k=0) ^n   (−1)^k  C_n ^k    ((n!)/((n−k)!)) x^(n−k)   ch.of indice  n−k=p give L_n (x)=(−1)^n  Σ_(p=0) ^n (−1)^(n−p)   C_n ^(n−p)  ((n!)/(p!)) x^p   L_n (x)= Σ_(p=0) ^n  (−1)^p   C_n ^p   ((n!)/(p!)) x^p   and is a polynomial  2) its clear that deg L_n =n and the leading coefficient is  (−1)^n  x^n  .
wehavebyLenizformulae(exxn)(n)=k=0nCnk(xn)(k)(ex)(nk)but(xn)(k)=n(n1)(n2)(nk+1)xnk=n!(nk)!xnkand(ex)(nk)=(1)nkex(exxn)(n)=exk=0n(1)nkCnkn!(nk)!xnkLn(x)=(1)nk=0n(1)kCnkn!(nk)!xnkch.ofindicenk=pgiveLn(x)=(1)np=0n(1)npCnnpn!p!xpLn(x)=p=0n(1)pCnpn!p!xpandisapolynomial2)itsclearthatdegLn=nandtheleadingcoefficientis(1)nxn.
Commented by abdo imad last updated on 13/Mar/18
Leibniz formulae...
Leibnizformulae
Commented by abdo imad last updated on 13/Mar/18
L_n  are named polynomials of Laguerre.
LnarenamedpolynomialsofLaguerre.

Leave a Reply

Your email address will not be published. Required fields are marked *